• Ades, M., and P. van Leeuwen, 2013: An exploration of the equivalent weights particle filter. Quart. J. Roy. Meteor. Soc., 139, 820840, doi:10.1002/qj.1995.

    • Search Google Scholar
    • Export Citation
  • Anderson, J., and S. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 27412758, doi:10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arulampalam, M., S. Maskell, N. Gordon, and T. Clapp, 2002: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process., 50, 174188, doi:10.1109/78.978374.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, T., P. Bickel, and B. Li, 2008: Curse of dimensionality revisted: Collapse of the particle filter in very large scale systems. Probability and Statistics: Essays in Honor of David A. Freedman, D. Nolan and T. Speed, Eds., Institute of Mathematical Statistics, 316–334.

  • Bickel, P., B. Li, and T. Bengtsson, 2008: Sharp failure rates for the bootstrap particle filter in high dimensions. Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, B. Clarke and S. Ghosal, Eds., Institute of Mathematical Statistics, 318–329.

  • Bocquet, M., C. A. Pires, and L. Wu, 2010: Beyond Gaussian statistical modeling in geophysical data assimilation. Mon. Wea. Rev., 138, 29973023, doi:10.1175/2010MWR3164.1.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., P. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724, doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chopin, N., 2004: Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Stat., 32, 23852411, doi:10.1214/009053604000000698.

    • Search Google Scholar
    • Export Citation
  • Chorin, A. J., and M. Morzfeld, 2013: Conditions for successful data assimilation. J. Geophys. Res. Atmos., 118, 11 52211 533, doi:10.1002/2013JD019838.

    • Search Google Scholar
    • Export Citation
  • Del Moral, P., and L. M. Murray, 2015: Sequential Monte Carlo with highly informative observations. ArXiv, accessed 29 January 2016. [Available online at http://arxiv.org/abs/1405.4081.]

  • Doucet, A., and A. Johansen, 2011: A tutorial on particle filtering and smoothing: Fifteen years later. Dept. of Statistics, Oxford University, 39 pp. [Available online at http://www.stats.ox.ac.uk/~doucet/doucet_johansen_tutorialPF2011.pdf.]

  • Doucet, A., S. Godsill, and C. Andrieu, 2000: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput., 10, 197208, doi:10.1023/A:1008935410038.

    • Search Google Scholar
    • Export Citation
  • Doucet, A., N. de Freitas, and N. Gordon, 2001: An introduction to sequential Monte Carlo methods. Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer-Verlag, 2–14.

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Gordon, N., D. Salmond, and A. Smith, 1993: Novel approach to nonlinear-non-Gaussian Bayesian state estimation. IEE Proc., F, Radar Signal Process., 140, 107113, doi:10.1049/ip-f-2.1993.0015.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hastings, W. K., 1970: Monte Carlo sampling methods using Markov Chains and their applications. Biometrika, 57, 97109, doi:10.1093/biomet/57.1.97.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123137, doi:10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kong, A., J. Liu, and W. Wong, 1994: Sequential imputations and Bayesian missing data problems. J. Amer. Stat. Assoc., 89, 278288, doi:10.1080/01621459.1994.10476469.

    • Search Google Scholar
    • Export Citation
  • Lin, M., R. Chen, and J. Liu, 2013: Lookahead strategies or sequential Monte Carlo. Stat. Sci., 28, 6994, doi:10.1214/12-STS401.

  • Lorenz, E. N., 1996: Predictability: A problem partly solved. Proc. Seminar on Predictability, Vol. 1, Reading, Berkshire, United Kingdom, ECMWF, 1–18.

  • Morzfeld, M., X. Tu, E. Atkins, and A. J. Chorin, 2012: A random map implementation of implicit filters. J. Comput. Phys., 231, 20492066, doi:10.1016/j.jcp.2011.11.022.

    • Search Google Scholar
    • Export Citation
  • Nakano, S., G. Ueno, and T. Higuchi, 2007: Merging particle filter for sequential data assimilation. Nonlinear Processes Geophys., 14, 395408, doi:10.5194/npg-14-395-2007.

    • Search Google Scholar
    • Export Citation
  • Robert, C. P., and G. Casella, 2004: Monte Carlo Statistical Methods. Springer-Verlag, 645 pp.

  • Silverman, B., 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall, 175 pp.

  • Snyder, C., 2012: Particle filters, the “optimal” proposal and high-dimensional systems. ECMWF Seminar on Data Assimilation for Atmosphere and Ocean, Shinfield, Reading, United Kingdom, ECMWF, 161–170.

  • Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. Mon. Wea. Rev., 136, 46294640, doi:10.1175/2008MWR2529.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., T. Bengtsson, and M. Morzfeld, 2015: Performance bounds for particle filters using the optimal proposal. Mon. Wea. Rev., 143, 47504761, doi:10.1175/MWR-D-15-0144.1.

    • Search Google Scholar
    • Export Citation
  • van Leeuwen, P., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 40894114, doi:10.1175/2009MWR2835.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 14
PDF Downloads 3 3 3

Exploring Practical Estimates of the Ensemble Size Necessary for Particle Filters

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

Particle filtering methods for data assimilation may suffer from the “curse of dimensionality,” where the required ensemble size grows rapidly as the dimension increases. It would, therefore, be useful to know a priori whether a particle filter is feasible to implement in a given system. Previous work provides an asymptotic relation between the necessary ensemble size and an exponential function of , a statistic that depends on observation-space quantities and that is related to the system dimension when the number of observations is large; for linear, Gaussian systems, the statistic can be computed from eigenvalues of an appropriately normalized covariance matrix. Tests with a low-dimensional system show that these asymptotic results remain useful when the system is nonlinear, with either the standard or optimal proposal implementation of the particle filter. This study explores approximations to the covariance matrices that facilitate computation in high-dimensional systems, as well as different methods to estimate the accumulated system noise covariance for the optimal proposal. Since may be approximated using an ensemble from a simpler data assimilation scheme, such as the ensemble Kalman filter, the asymptotic relations thus allow an estimate of the ensemble size required for a particle filter before its implementation. Finally, the improved performance of particle filters with the optimal proposal, relative to those using the standard proposal, in the same low-dimensional system is demonstrated.

Current affiliation: Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Laura Slivinski, NOAA/ESRL/Physical Sciences Division, R/PSD, 325 Broadway, Boulder, CO 80305. E-mail: laura.slivinski@noaa.gov

Abstract

Particle filtering methods for data assimilation may suffer from the “curse of dimensionality,” where the required ensemble size grows rapidly as the dimension increases. It would, therefore, be useful to know a priori whether a particle filter is feasible to implement in a given system. Previous work provides an asymptotic relation between the necessary ensemble size and an exponential function of , a statistic that depends on observation-space quantities and that is related to the system dimension when the number of observations is large; for linear, Gaussian systems, the statistic can be computed from eigenvalues of an appropriately normalized covariance matrix. Tests with a low-dimensional system show that these asymptotic results remain useful when the system is nonlinear, with either the standard or optimal proposal implementation of the particle filter. This study explores approximations to the covariance matrices that facilitate computation in high-dimensional systems, as well as different methods to estimate the accumulated system noise covariance for the optimal proposal. Since may be approximated using an ensemble from a simpler data assimilation scheme, such as the ensemble Kalman filter, the asymptotic relations thus allow an estimate of the ensemble size required for a particle filter before its implementation. Finally, the improved performance of particle filters with the optimal proposal, relative to those using the standard proposal, in the same low-dimensional system is demonstrated.

Current affiliation: Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Laura Slivinski, NOAA/ESRL/Physical Sciences Division, R/PSD, 325 Broadway, Boulder, CO 80305. E-mail: laura.slivinski@noaa.gov
Save