• Alapaty, K., J. A. Herwehe, T. L. Otte, C. G. Nolte, O. R. Bullock, M. S. Mallard, J. S. Kain, and J. Dudhia, 2012: Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys. Res. Lett., 39, L24809, doi:10.1029/2012GL054031.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and J.-H. Jung, 2011: Multiscale modeling of the moist-convective atmosphere—A review. Atmos. Res., 102, 263285, doi:10.1016/j.atmosres.2011.08.009.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and C.-M. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 19771992, doi:10.1175/JAS-D-12-0330.1.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, doi:10.1002/qj.289.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC mesoscale Eta model: Description and forecast examples. Wea. Forecasting, 9, 265278, doi:10.1175/1520-0434(1994)009<0265:TNNMEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., C. S. Bretherton, J. Cetrone, and M. Kharoutdinov, 2007: Cloud-resolving model simulations of KWAJEX: Model sensitivities and comparisons with satellite and radar observations. J. Atmos. Sci., 64, 14881508, doi:10.1175/JAS3982.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Bullock, O. R., Jr., K. Alapaty, J. A. Herwehe, and J. S. Kain, 2015: A dynamically computed convective time scale for the Kain–Fritsch convective parameterization scheme. Mon. Wea. Rev., 143, 21052120, doi:10.1175/MWR-D-14-00251.1.

    • Search Google Scholar
    • Export Citation
  • Case, J. L., W. L. Crosson, S. V. Kumar, W. M. Lapenta, and C. D. Peters-Lidard, 2008: Impacts of high-resolution land surface initialization on regional sensible weather forecasts from the WRF model. J. Hydrometeor., 9, 12491266, doi:10.1175/2008JHM990.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, doi:10.1002/joc.2158.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., and M. Sugiyama, 2010: A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. J. Atmos. Sci., 67, 21712193, doi:10.1175/2010JAS3316.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, R., J. A. Otkin, M. Xue, and F. Kong, 2014: Evaluating the performance of planetary boundary layer and cloud microphysical parameterization schemes in convection-permitting ensemble forecasts using synthetic GOES-13 satellite observations. Mon. Wea. Rev., 142, 163182, doi:10.1175/MWR-D-13-00143.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, doi:10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, doi:10.1175/2009MWR2956.1.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entraiment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, doi:10.1002/qj.1959.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 27222738, doi:10.1175/2009JCLI3340.1.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Search Google Scholar
    • Export Citation
  • Deng, A., and D. R. Stauffer, 2006: On improving 4-km mesoscale model simulations. J. Appl. Meteor. Climatol., 45, 361381, doi:10.1175/JAM2341.1.

    • Search Google Scholar
    • Export Citation
  • Done, J. M., C. A. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Search Google Scholar
    • Export Citation
  • Done, J. M., G. C. Craig, S. L. Gray, P. A. Clark, and M. E. B. Gray, 2006: Mesoscale simulations of organized convection: Importance of convective equilibrium. Quart. J. Roy. Meteor. Soc., 132, 737756, doi:10.1256/qj.04.84.

    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., 1997: Predicting the uncertainty of numerical weather forecasts: A review. Meteor. Z., 6, 147183.

  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 17221733, doi:10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and A. P. Lock, 2004: The turbulent kinetic energy budget for shallow cumulus convection. Quart. J. Roy. Meteor. Soc., 130, 401422, doi:10.1256/qj.03.50.

    • Search Google Scholar
    • Export Citation
  • Gustafson, W. I., Jr., P.-L. Ma, H. Xiao, B. Singh, P. J. Rasch, and J. D. Fast, 2013: The Separate Physics and Dynamics Experiment (SPADE) framework for determining resolution awareness: A case study of microphysics. J. Geophys. Res. Atmos., 118, 92589276, doi:10.1002/jgrd.50711.

    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, doi:10.1175/WAF-D-10-05038.1.

    • Search Google Scholar
    • Export Citation
  • Herwehe, J. A., K. Alapaty, T. L. Spero, and C. G. Nolte, 2014: Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud–radiation interactions. J. Geophys. Res. Atmos., 119, 53175330, doi:10.1002/2014JD021504.

    • Search Google Scholar
    • Export Citation
  • Holland, J. Z., and E. M. Rasmusson, 1973: Measurement of atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean. Mon. Wea. Rev., 101, 4455, doi:10.1175/1520-0493(1973)101<0044:MOTAME>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holt, T. R., D. Niyogi, F. Chen, K. Manning, M. A. LeMone, and A. Qureshi, 2006: Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Mon. Wea. Rev., 134, 113133, doi:10.1175/MWR3057.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., K.-S. Sunny Lim, Y.-H. Lee, J.-C. Ha, H.-W. Kim, S.-J. Ham, and J. Dudhia, 2010: Evaluation of the WRF double-moment 6-class microphysics scheme for precipitating convection. Adv. Meteor., 2010, 707253, doi:10.1155/2010/707253.

    • Search Google Scholar
    • Export Citation
  • Houghton, H., and H. Cramer, 1951: A theory of entrainment in convective currents. J. Meteor., 8, 95102, doi:10.1175/1520-0469(1951)008<0095:ATOEIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shepard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, doi:10.1175/2009JAS2924.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, E. D. Maloney, D. M. W. Frierson, and I.-S. Kang, 2011: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 55065520, doi:10.1175/2011JCLI4177.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M. G., and P. J. Rasch, 2005: Tracer transport in deep convective updrafts: Plume ensemble versus bulk formulations. J. Atmos. Sci., 62, 28802894, doi:10.1175/JAS3505.1.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and Coauthors, 2007: NCAR/CU surface, soil, and vegetation observations during the International H2O Project 2002 field campaign. Bull. Amer. Meteor. Soc., 88, 6581, doi:10.1175/BAMS-88-1-65.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • Lin, Y., M. Zhao, Y. Ming, J.-C. Golaz, L. J. Donner, S. A. Klein, V. Ramaswamy, and S. Xie, 2013: Precipitation partitioning, tropical clouds, and intraseasonal variability in GFDL AM2. J. Climate, 26, 54535466, doi:10.1175/JCLI-D-12-00442.1.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., Y. Wang, H. Wang, Y. Zheng, and H. Morrison, 2010: Modeling convective-stratiform precipitation processes on a Mei-Yu front with the Weather Research and Forecasting model: Comparison with observations and sensitivity to cloud microphysics parameterizations. J. Geophys. Res., 115, D18117, doi:10.1029/2010JD013873.

    • Search Google Scholar
    • Export Citation
  • Mallard, M. S., G. M. Lackmann, A. Aiyyer, and K. Hill, 2013: Atlantic hurricanes and climate change. Part I: Experimental design and isolation of thermodynamic effects. J. Climate, 26, 48764893, doi:10.1175/JCLI-D-12-00182.1.

    • Search Google Scholar
    • Export Citation
  • Mishra, S. K., and J. Srinivasan, 2010: Sensitivity of the simulated precipitation to changes in convective relaxation time scale. Ann. Geophys., 28, 18271846, doi:10.5194/angeo-28-1827-2010.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120, 326344, doi:10.1175/1520-0493(1992)120<0326:POCPIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmospheric Model (CAM5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp. [Avalable online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Niyogi, D., P. Pyle, M. Lei, S. P. Arya, C. M. Kishtawal, M. Shepherd, F. Chen, and B. Wolfe, 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, doi:10.1175/2010JAMC1836.1.

    • Search Google Scholar
    • Export Citation
  • Otte, T. L., C. G. Nolte, M. J. Otte, and J. H. Bowden, 2012: Does nudging squelch the extremes in regional climate modeling? J. Climate, 25, 70467066, doi:10.1175/JCLI-D-12-00048.1.

    • Search Google Scholar
    • Export Citation
  • Pijanowski, B., N. Moore, D. Mauree, and D. Niyogi, 2011: Evaluating error propagation in coupled land–atmosphere models. Earth Interact., 15, doi:10.1175/2011EI380.1.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., E. Klinker, P. Courtier, and A. Hollingsworth, 1996: Sensitivity of forecast errors to initial conditions. Quart. J. Roy. Meteor. Soc., 122, 121150, doi:10.1002/qj.49712252906.

    • Search Google Scholar
    • Export Citation
  • Ray, D. K., R. A. Pielke, U. S. Nair, and D. Niyogi, 2010: Roles of atmospheric and land surface data in dynamic regional downscaling. J. Geophys. Res., 115, D05102, doi:10.1029/2009JD012218.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499, doi:10.1175/2007JCLI1789.1.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J. Atmos. Sci., 67, 468484, doi:10.1175/2009JAS3184.1.

    • Search Google Scholar
    • Export Citation
  • Seaman, N. L., S. A. Michelson, P. C. Shafran, and D. R. Stauffer, 1998: Forecast of a severe squall line development in MM5 using explicit moist physics at 4-km resolution. Preprints, 12th Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., J1J4.

  • Seifert, A., and B. Stevens, 2010: Microphysical scaling relations in a kinematic model of isolated shallow cumulus clouds. J. Atmos. Sci., 67, 15751590, doi:10.1175/2009JAS3319.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and A. Hollingsworth, 2002: Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 128, 647677, doi:10.1256/003590002321042135.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, doi:10.1175/MWR-D-11-00215.1.

    • Search Google Scholar
    • Export Citation
  • Snively, D. V., and W. A. Gallus Jr., 2014: Prediction of convective morphology in near-cloud-permitting WRF model simulations. Wea. Forecasting, 29, 130149, doi:10.1175/WAF-D-13-00047.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 462 pp.

  • Stensrud, D. J., J. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, doi:10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., and C. S. Bretherton, 1999: Effects of resolution on the simulation of stratocumulus entrainment. Quart. J. Roy. Meteor. Soc., 125, 425439, doi:10.1002/qj.49712555403.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231235, doi:10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kotoh, and T. Ose, 1988: The equatorial 30-60 day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883900.

    • Search Google Scholar
    • Export Citation
  • van Lier-Walqui, M., T. Vukicevic, and D. J. Posselt, 2012: Quantification of cloud microphysical parameterization uncertainty using radar reflectivity. Mon. Wea. Rev., 140, 34423466, doi:10.1175/MWR-D-11-00216.1.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2013: The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical western Pacific. J. Atmos. Sci., 70, 11041128, doi:10.1175/JAS-D-12-0104.1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and N. L. Seaman, 1997: A comparison of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125, 252278, doi:10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., H. Xie, H. Sharif, and J. Zeitler, 2008: Validating NEXRAD MPE and stage III precipitation products for uniform rainfall on the Upper Guadalupe River Basin of the Texas Hill Country. J. Hydrol., 348, 7386, doi:10.1016/j.jhydrol.2007.09.057.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., C. N. Long, L. R. Leung, J. Dudhia, S. A. McFarlane, J. H. Mather, S. J. Ghan, and X. Liu, 2009: Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) Darwin, 2006. J. Geophys. Res., 114, D21203, doi:10.1029/2009JD012729.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Search Google Scholar
    • Export Citation
  • Westcott, N. E., 2009: Differences in multi-sensor and rain-gauge precipitation amounts. Water Manage., 162, 7381.

  • Westcott, N. E., H. V. Knapp, and S. D. Hilberg, 2008: Comparison of gage and multi-sensor precipitation estimates over a range of spatial and temporal scales in the Midwestern United States. J. Hydrol., 351, 112, doi:10.1016/j.jhydrol.2007.10.057.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, doi:10.1175/MWR3069.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., H.-S. Bauer, M. Grzeschik, A. Behrendt, F. Vandenberghe, E. V. Browell, S. Ismail, and R. A. Ferrare, 2006: Four-dimensional variational assimilation of water vapor differential absorption lidar data: The first case study within IHOP_2002. Mon. Wea. Rev., 134, 209230, doi:10.1175/MWR3070.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., A. Kumar, and D. Niyogi, 2015: Impacts of land–atmosphere coupling on regional rainfall and convection. Climate Dyn., 44, 23832409, doi:10.1007/s00382-014-2442-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 59 59 59
PDF Downloads 62 62 62

Improving High-Resolution Weather Forecasts Using the Weather Research and Forecasting (WRF) Model with an Updated Kain–Fritsch Scheme

View More View Less
  • 1 Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana
  • | 2 National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
  • | 3 NASA Goddard Institute for Space Studies, New York, New York
  • | 4 Department of Agronomy, and Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana
Restricted access

Abstract

Efforts to improve the prediction accuracy of high-resolution (1–10 km) surface precipitation distribution and variability are of vital importance to local aspects of air pollution, wet deposition, and regional climate. However, precipitation biases and errors can occur at these spatial scales due to uncertainties in initial meteorological conditions and/or grid-scale cloud microphysics schemes. In particular, it is still unclear to what extent a subgrid-scale convection scheme could be modified to bring in scale awareness for improving high-resolution short-term precipitation forecasts in the WRF Model. To address these issues, the authors introduced scale-aware parameterized cloud dynamics for high-resolution forecasts by making several changes to the Kain–Fritsch (KF) convective parameterization scheme in the WRF Model. These changes include subgrid-scale cloud–radiation interactions, a dynamic adjustment time scale, impacts of cloud updraft mass fluxes on grid-scale vertical velocity, and lifting condensation level–based entrainment methodology that includes scale dependency.

A series of 48-h retrospective forecasts using a combination of three treatments of convection (KF, updated KF, and the use of no cumulus parameterization), two cloud microphysics schemes, and two types of initial condition datasets were performed over the U.S. southern Great Plains on 9- and 3-km grid spacings during the summers of 2002 and 2010. Results indicate that 1) the source of initial conditions plays a key role in high-resolution precipitation forecasting, and 2) the authors’ updated KF scheme greatly alleviates the excessive precipitation at 9-km grid spacing and improves results at 3-km grid spacing as well. Overall, the study found that the updated KF scheme incorporated into a high-resolution model does provide better forecasts for precipitation location and intensity.

Corresponding author address: Kiran Alapaty, U.S. Environmental Protection Agency, Mail Code E243-01, Research Triangle Park, NC 27711. E-mail: alapaty.kiran@epa.gov

Abstract

Efforts to improve the prediction accuracy of high-resolution (1–10 km) surface precipitation distribution and variability are of vital importance to local aspects of air pollution, wet deposition, and regional climate. However, precipitation biases and errors can occur at these spatial scales due to uncertainties in initial meteorological conditions and/or grid-scale cloud microphysics schemes. In particular, it is still unclear to what extent a subgrid-scale convection scheme could be modified to bring in scale awareness for improving high-resolution short-term precipitation forecasts in the WRF Model. To address these issues, the authors introduced scale-aware parameterized cloud dynamics for high-resolution forecasts by making several changes to the Kain–Fritsch (KF) convective parameterization scheme in the WRF Model. These changes include subgrid-scale cloud–radiation interactions, a dynamic adjustment time scale, impacts of cloud updraft mass fluxes on grid-scale vertical velocity, and lifting condensation level–based entrainment methodology that includes scale dependency.

A series of 48-h retrospective forecasts using a combination of three treatments of convection (KF, updated KF, and the use of no cumulus parameterization), two cloud microphysics schemes, and two types of initial condition datasets were performed over the U.S. southern Great Plains on 9- and 3-km grid spacings during the summers of 2002 and 2010. Results indicate that 1) the source of initial conditions plays a key role in high-resolution precipitation forecasting, and 2) the authors’ updated KF scheme greatly alleviates the excessive precipitation at 9-km grid spacing and improves results at 3-km grid spacing as well. Overall, the study found that the updated KF scheme incorporated into a high-resolution model does provide better forecasts for precipitation location and intensity.

Corresponding author address: Kiran Alapaty, U.S. Environmental Protection Agency, Mail Code E243-01, Research Triangle Park, NC 27711. E-mail: alapaty.kiran@epa.gov
Save