• Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, doi:10.1175/JCLI3815.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325334, doi:10.1002/qj.49709239302.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, doi:10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carr, J. A., 1952: A preliminary report on the tornadoes of March 21–22, 1952. Mon. Wea. Rev., 80, 5058, doi:10.1175/1520-0493(1952)080<0050:APROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1955: The use of the primitive and balance equations. Tellus, 7, 2226, doi:10.1111/j.2153-3490.1955.tb01138.x.

  • Corfidi, S., S. Weiss, J. Kain, S. Corfidi, R. Rabin, and J. Levit, 2010: Revisiting the 3–4 April 1974 Super Outbreak of tornadoes. Wea. Forecasting, 25, 465510, doi:10.1175/2009WAF2222297.1.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., C. Schar, and H. Wernli, 1991: The palette of fronts and cyclones within a baroclinic wave development. J. Atmos. Sci., 48, 16661689, doi:10.1175/1520-0469(1991)048<1666:TPOFAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., D. W. Burgess, and M. P. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588592.

  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, doi:10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall/CRC, 436 pp.

  • Ertel, H., 1942: Ein neuer hydrodynamischer Wirbelsatz (A new hydrodynamical vorticity equation). Meteor. Z., 59, 277281.

  • Fujita, T., D. L. Bradbury, and C. F. Van Thullenar, 1970: Palm Sunday tornadoes of April 11, 1965. Mon. Wea. Rev., 98, 2969, doi:10.1175/1520-0493(1970)098<0029:PSTOA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaffin, D. M., and S. S. Parker, 2006: A climatology of synoptic conditions associated with significant tornadoes over the southern Appalachian region. Wea. Forecasting, 21, 735751, doi:10.1175/WAF951.1.

    • Search Google Scholar
    • Export Citation
  • Galway, J. G., 1975: Relationship of tornado deaths to severe weather watch areas. Mon. Wea. Rev., 103, 737741, doi:10.1175/1520-0493(1975)103<0737:ROTDTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Galway, J. G., 1977: Some climatological aspects of tornado outbreaks. Mon. Wea. Rev., 105, 477484, doi:10.1175/1520-0493(1977)105<0477:SCAOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grazulis, T. P., 1993: Significant Tornadoes 1680–1991: A Chronology and Analysis of Events. Environmental Films, 1340 pp.

  • Hamill, T. M., R. S. Schneider, H. E. Brooks, G. S. Forbes, H. B. Bluestein, M. Steinberg, D. Melendez, and R. M. Dole, 2005: The May 2003 extended tornado outbreak. Bull. Amer. Meteor. Soc., 86, 531542, doi:10.1175/BAMS-86-4-531.

    • Search Google Scholar
    • Export Citation
  • Hart, J. A., and W. Korotky, 1991: The SHARP workstation v1.50 users guide. NOAA/National Weather Service, 30 pp. [Available from NWS Eastern Region Headquarters, 630 Johnson Ave., Bohemia, NY 11716.].

  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586, doi:10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465, doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373, doi:10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, doi:10.1175/2011JCLI4097.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, doi:10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2012: High-resolution global climate simulations with the ECMWF model in project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 31553172, doi:10.1175/JCLI-D-11-00265.1.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., B. F. Jewett, and R. B. Wilhelmson, 2006: The 19 April 1996 Illinois Tornado outbreak. Part II: Cell mergers and associated tornado incidence. Wea. Forecasting, 21, 449464, doi:10.1175/WAF943.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 424 pp.

  • Mercer, A. E., C. M. Shafer, C. A. Doswell, L. M. Leslie, and M. B. Richman, 2009: Objective classification of tornadic and nontornadic severe weather outbreaks. Mon. Wea. Rev., 137, 43554368, doi:10.1175/2009MWR2897.1.

    • Search Google Scholar
    • Export Citation
  • Mercer, A. E., C. M. Shafer, C. A. Doswell, L. M. Leslie, and M. B. Richman, 2012: Synoptic composites of tornadic and nontornadic outbreaks. Mon. Wea. Rev., 140, 25902608, doi:10.1175/MWR-D-12-00029.1.

    • Search Google Scholar
    • Export Citation
  • Miller, R., 1972: Notes on analysis and severe-storm forecasting procedures of the Air Force Global Weather Center. Air Weather Service Tech. Rep. 200, rev. ed. Air Weather Service, Scott Air Force Base, IL, 184 pp.

  • Monteverdi, J. P., C. A. Doswell, and G. S. Lipari, 2003: Shear parameter thresholds for forecasting tornadic thunderstorms in northern and central California. Wea. Forecasting, 18, 357370, doi:10.1175/1520-0434(2003)018<0357:SPTFFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newton, C. W., 1967: Severe convective storms. Advances in Geophysics, Vol. 12, Academic Press, 257–303.

  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530535, doi:10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., D. M. Schultz, and R. Romero, 2002: Synoptic regulation of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 399429, doi:10.1175/1520-0434(2002)017<0399:SROTMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and F. Zhang, 2007: Baroclinic development within zonally-varying flows. Quart. J. Roy. Meteor. Soc., 133, 11011112, doi:10.1002/qj.87.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., D. Keyser, and L. F. Bosart, 1998: The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Mon. Wea. Rev., 126, 17671791, doi:10.1175/1520-0493(1998)126<1767:TEOLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shafer, C. M., A. E. Mercer, C. A. Doswell, M. B. Richman, and L. M. Leslie, 2009: Evaluation of WRF forecasts of tornadic and nontornadic outbreaks when initialized with synoptic-scale input. Mon. Wea. Rev., 137, 12501271, doi:10.1175/2008MWR2597.1.

    • Search Google Scholar
    • Export Citation
  • Shafer, C. M., C. A. Doswell III, L. M. Leslie, and M. B. Richman, 2010a: On the use of areal coverage of parameters favorable for severe weather to discriminate major outbreaks. Electron. J. Severe Storms Meteor., 5 (7). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/72.]

    • Search Google Scholar
    • Export Citation
  • Shafer, C. M., C. A. Doswell III, L. M. Leslie, M. B. Richman, and C. A. Doswell, 2010b: Evaluation of WRF model simulations of tornadic and nontornadic outbreaks that occur in the spring and fall. Mon. Wea. Rev., 138, 40984119, doi:10.1175/2010MWR3269.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J. V. Cortinas, and H. E. Brooks, 1997: Discriminating between tornadic and nontornadic thunderstorms using mesoscale model output. Wea. Forecasting, 12, 613632, doi:10.1175/1520-0434(1997)012<0613:DBTANT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682703, doi:10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., R. Fehlmann, and D. Lüthi, 1998: The effect of barotropic shear on upper-level induced cyclogenesis: Semigeostrophic and primitive equation numerical simulations. J. Atmos. Sci., 55, 20802094, doi:10.1175/1520-0469(1998)055<2080:TEOBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Yanase, W., H. Niino, K. Hodges, and N. Kitabatake, 2014: Parameter spaces of environmental fields responsible for cyclone development from tropics to extratropics. J. Climate, 27, 652671, doi:10.1175/JCLI-D-13-00153.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 7 7 7

Structural and Environmental Characteristics of Extratropical Cyclones that Cause Tornado Outbreaks in the Warm Sector: A Composite Study

View More View Less
  • 1 Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
Restricted access

Abstract

The structural and environmental characteristics of extratropical cyclones that cause tornado outbreaks [outbreak cyclones (OCs)] and that do not [nonoutbreak cyclones (NOCs)] are examined using the Japanese 55-year Reanalysis dataset (JRA-55). Composite analyses show differences between OCs and NOCs: for OCs, storm relative environmental helicity (SREH) and convective available potential energy (CAPE) are notably larger, and the areas in which these parameters have significant values are wider in the warm sector than they are for NOCs. The larger CAPE in OCs is due to larger amounts of low-level water vapor, while the greater SREH is due to stronger low-level southerly wind.

The composite analyses for environmental fields defined by 20-day means suggest that environmental meridional flows have the potential to advect large amounts of warm and moist air northward, creating atmospheric instability in the troposphere that contributes to the occurrence of a tornado outbreak. A piecewise potential vorticity (PV) diagnosis shows that low- to midlevel PV anomalies are the main contributor to the difference in the low-level winds between OCs and NOCs, whereas upper-level PV anomalies make only a minor contribution.

An examination of the structures of the extratropical cyclones and the upper-level jet stream suggests that the difference in the low-level winds between OCs and NOCs is due to differences in the structure of the jet stream. The OCs develop when the jet stream displays larger anticyclonic shear. This causes a more meridionally elongated structure of OCs, resulting in stronger low-level winds in the southeastern quadrant of the cyclones.

Corresponding author address: Eigo Tochimoto, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan. E-mail: tochimoto@aori.u-tokyo.ac.jp

Abstract

The structural and environmental characteristics of extratropical cyclones that cause tornado outbreaks [outbreak cyclones (OCs)] and that do not [nonoutbreak cyclones (NOCs)] are examined using the Japanese 55-year Reanalysis dataset (JRA-55). Composite analyses show differences between OCs and NOCs: for OCs, storm relative environmental helicity (SREH) and convective available potential energy (CAPE) are notably larger, and the areas in which these parameters have significant values are wider in the warm sector than they are for NOCs. The larger CAPE in OCs is due to larger amounts of low-level water vapor, while the greater SREH is due to stronger low-level southerly wind.

The composite analyses for environmental fields defined by 20-day means suggest that environmental meridional flows have the potential to advect large amounts of warm and moist air northward, creating atmospheric instability in the troposphere that contributes to the occurrence of a tornado outbreak. A piecewise potential vorticity (PV) diagnosis shows that low- to midlevel PV anomalies are the main contributor to the difference in the low-level winds between OCs and NOCs, whereas upper-level PV anomalies make only a minor contribution.

An examination of the structures of the extratropical cyclones and the upper-level jet stream suggests that the difference in the low-level winds between OCs and NOCs is due to differences in the structure of the jet stream. The OCs develop when the jet stream displays larger anticyclonic shear. This causes a more meridionally elongated structure of OCs, resulting in stronger low-level winds in the southeastern quadrant of the cyclones.

Corresponding author address: Eigo Tochimoto, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan. E-mail: tochimoto@aori.u-tokyo.ac.jp
Save