• Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126, 525550, doi:10.1175/1520-0493(1998)126<0525:OOTFSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., and M. L. Ekster, 2010: The association of the elevated mixed layer with significant severe weather events in the northeastern United States. Wea. Forecasting, 25, 10821102, doi:10.1175/2010WAF2222363.1.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., S. G. Benjamin, G. S. Forbes, and Y.-F. Li, 1983: Elevated mixed layers in the regional severe storm environment: Conceptual model and case studies. Mon. Wea. Rev., 111, 14531474, doi:10.1175/1520-0493(1983)111<1453:EMLITR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., S. J. Weiss, J. S. Kain, S. J. Corfidi, R. M. Rabin, and J. J. Levit, 2010: Revisiting the 3–4 April 1974 Super Outbreak of tornadoes. Wea. Forecasting, 25, 465510, doi:10.1175/2009WAF2222297.1.

    • Search Google Scholar
    • Export Citation
  • Dos Santos Mesquita, M., N. G. Kvamstø, A. Sorteberg, and D. E. Atkinson, 2008: Climatological properties of summertime extra-tropical storm tracks in the Northern Hemisphere. Tellus, 60A, 557569, doi:10.1111/j.1600-0870.2008.00305.x.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, doi:10.1175/WAF866.1.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., 1999: HYSPLIT4 user’s guide. NOAA Tech. Memo. ERL ARL-230, NOAA/Air Resources Laboratory, Silver Spring, MD, 46 pp.

  • Draxler, R. R., and G. D. Hess, 1997: Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, NOAA/Air Resources Laboratory, Silver Spring, MD, 24 pp.

  • Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295308.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Rolph, 2015: HYSPLIT—Hybrid Single Particle Lagrangian Integrated Trajectory Model. NOAA/Air Resources Laboratory, College Park, MD, accessed 11 February 2014. [Available online at http://www.arl.noaa.gov/HYSPLIT.php.]

  • Eichler, T., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19, 20762093, doi:10.1175/JCLI3725.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., 2008: Dryline characteristics near Lubbock, Texas, based on radar and West Texas Mesonet data for May 2005 and May 2006. Wea. Forecasting, 23, 392406, doi:10.1175/2007WAF2007044.1.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., 2004: Quiescent and synoptically-active drylines: A comparison based upon case studies. Meteor. Atmos. Phys., 86, 195211, doi:10.1007/s00703-003-0026-y.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., H. B. Bluestein, T. M. Crawford, M. E. Baldwin, and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev., 125, 231251, doi:10.1175/1520-0493(1997)125<0231:STDIRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., J. D. Locatelli, and J. E. Martin, 1996: A new conceptual model for cyclones generated in the lee of the Rocky Mountains. Bull. Amer. Meteor. Soc., 77, 11691178, doi:10.1175/1520-0477(1996)077<1169:ANCMFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoch, J., and P. Markowski, 2005: A climatology of springtime dryline position in the U.S. Great Plains region. J. Climate, 18, 21322137, doi:10.1175/JCLI3392.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., and Coauthors, 2014: Meteorological overview of the devastating 27 April 2011 tornado outbreak. Bull. Amer. Meteor. Soc., 95, 10411062, doi:10.1175/BAMS-D-11-00229.1.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., R. D. Schwartz, M. T. Stoelinga, and P. V. Hobbs, 2002a: Norwegian-type and cold front aloft-type cyclones east of the Rocky Mountains. Wea. Forecasting, 17, 6682, doi:10.1175/1520-0434(2002)017<0066:NTACFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., M. T. Stoelinga, and P. V. Hobbs, 2002b: A new look at the Super Outbreak of tornadoes on 3–4 April 1974. Mon. Wea. Rev., 130, 16331651, doi:10.1175/1520-0493(2002)130<1633:ANLATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., M. S. Gilmore, C. A. Doswell III, R. H. Johns, C. A. Crisp, D. W. Burgess, J. A. Hart, and S. F. Piltz, 2013: Meteorological analyses of the Tri-State tornado event of March 1925. Electron. J. Severe Storms Meteor., 8 (1). [Available online at http://ejssm.org/ojs/index.php/ejssm/issue/view/43.]

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., J. D. Locatelli, P. V. Hobbs, P. Wang, and J. A. Castle, 1995: Structure and evolution of winter cyclones in the central United States and their effects on the distribution of precipitation. Part I: A synoptic-scale rainband associated with a dryline and lee trough. Mon. Wea. Rev., 123, 241264, doi:10.1175/1520-0493(1995)123<0241:SAEOWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Metz, N. D., M. Schultz, and R. H. Johns, 2004: Extratropical cyclones with multiple warm-front-like baroclinic zones and their relationship to severe convective storms. Wea. Forecasting, 19, 907916, doi:10.1175/1520-0434(2004)019<0907:ECWMWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, D. A., and F. Sanders, 1980: Mesoscale conditions for the severe convection of 3 April 1974 in the east-central United States. J. Atmos. Sci., 37, 10411055, doi:10.1175/1520-0469(1980)037<1041:MCFTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mulqueen, K. C., and D. M. Schultz, 2015: Non-classic extratropical cyclones on Met Office sea-level pressure charts: Double cold and warm fronts. Weather, 70, 100105, doi:10.1002/wea.2463.

    • Search Google Scholar
    • Export Citation
  • NOAA/National Centers for Environmental Information, 2015: Storm Events Database. NOAA/National Centers for Environmental Information. Subset used: February 1999-February 2013, accessed 11 May 2015.

  • Rhea, J. O., 1966: A study of thunderstorm formation along dry lines. J. Appl. Meteor., 5, 5863, doi:10.1175/1520-0450(1966)005<0058:ASOTFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robinson, P. J., 1998: Monthly variation of dew point temperature in the coterminous United States. Int. J. Climatol., 18, 15391556, doi:10.1002/(SICI)1097-0088(19981130)18:14<1539::AID-JOC326>3.0.CO;2-L.

    • Search Google Scholar
    • Export Citation
  • Rolph, G. D., 2015: READY—Real-time Environmental Applications and Display sYstem. NOAA/Air Resources Laboratory, Silver Spring, MD, accessed 11 February 2014. [Available online at http://www.ready.noaa.gov.]

  • Schaefer, J. T., 1974: The lifecycle of the dryline. J. Appl. Meteor., 13, 444449, doi:10.1175/1520-0450(1974)013<0444:TLCOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1986: The dryline. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.

  • Schultz, D. M., C. C. Weiss, and P. M. Hoffman, 2007: The synoptic regulation of dryline intensity. Mon. Wea. Rev., 135, 16991709, doi:10.1175/MWR3376.1.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., 1999: Effects of imperfect storm reporting on the verification of weather warnings. Bull. Amer. Meteor. Soc., 80, 10991105, doi:10.1175/1520-0477(1999)080<1099:EOISRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and C. F. Mass, 1994: The structure and evolution of a simulated Rocky Mountain lee trough. Mon. Wea. Rev., 122, 27402761, doi:10.1175/1520-0493(1994)122<2740:TSAEOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, doi:10.1175/WAF925.1.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., H. B. Bluestein, and A. L. Pazmany, 2006: Finescale radar observations of the 22 May 2002 dryline during the International H2O Project (IHOP). Mon. Wea. Rev., 134, 273293, doi:10.1175/MWR3068.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13, 11061131, doi:10.1175/1520-0434(1998)013<1106:TIOMCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 5 5 5

Climatology, Synoptic Conditions, and Misanalyses of Mississippi River Valley Drylines

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska
Restricted access

Abstract

The dryline is an important focal point for convection initiation. Although drylines most commonly occur on the southern Great Plains, dryline passages and subsequent severe weather outbreaks have been documented in the Mississippi River valley. This study presents a 15-yr (1999–2013) climatology of these Mississippi River valley drylines and associated severe weather. Additionally, synoptic patterns are identified that may result in drylines moving atypically far eastward into the Mississippi River valley. In total, 39 Mississippi River valley drylines (hereafter referred to as MRV drylines) were identified from the North American Regional Reanalysis (NARR) dataset through the study period. Mean and anomaly synoptic composites were created for these drylines. MRV dryline events typically occur under synoptically active conditions with an amplified upper-air pattern, a 500-hPa shortwave trough to the west or northwest of the dryline, and a strong surface cyclone to the north. These boundaries are often misanalyzed or inconsistently analyzed as cold fronts, stationary fronts, or trough axes on surface maps; of the 33 cases of identified MRV drylines for which the Weather Prediction Center archived analyses were available, only 6 were correctly analyzed as drylines. Drylines moving into the Mississippi River valley often result in severe weather outbreaks in the Mississippi River valley, the Midwest, and the southeastern United States.

Corresponding author address: Rebecca S. Duell, National Weather Service Anchorage Forecast Office, 6930 Sand Lake Road, Anchorage, AK 99502. E-mail: rebecca.duell@noaa.gov

Abstract

The dryline is an important focal point for convection initiation. Although drylines most commonly occur on the southern Great Plains, dryline passages and subsequent severe weather outbreaks have been documented in the Mississippi River valley. This study presents a 15-yr (1999–2013) climatology of these Mississippi River valley drylines and associated severe weather. Additionally, synoptic patterns are identified that may result in drylines moving atypically far eastward into the Mississippi River valley. In total, 39 Mississippi River valley drylines (hereafter referred to as MRV drylines) were identified from the North American Regional Reanalysis (NARR) dataset through the study period. Mean and anomaly synoptic composites were created for these drylines. MRV dryline events typically occur under synoptically active conditions with an amplified upper-air pattern, a 500-hPa shortwave trough to the west or northwest of the dryline, and a strong surface cyclone to the north. These boundaries are often misanalyzed or inconsistently analyzed as cold fronts, stationary fronts, or trough axes on surface maps; of the 33 cases of identified MRV drylines for which the Weather Prediction Center archived analyses were available, only 6 were correctly analyzed as drylines. Drylines moving into the Mississippi River valley often result in severe weather outbreaks in the Mississippi River valley, the Midwest, and the southeastern United States.

Corresponding author address: Rebecca S. Duell, National Weather Service Anchorage Forecast Office, 6930 Sand Lake Road, Anchorage, AK 99502. E-mail: rebecca.duell@noaa.gov
Save