• Alexander, G. D., J. A. Weinman, V. M. Karyampudi, W. S. Olson, and A. Lee, 1999: The effect of assimilating rain rates derived from satellites and lightning on forecasts of the 1993 superstorm. Mon. Wea. Rev., 127, 14331457, doi:10.1175/1520-0493(1999)127<1433:TEOARR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., S. Lakshmivarahan, and J. S. Kain, 2001: Verification of mesoscale features in NWP models. Preprints, Ninth Conf. on Mesoscale Processes, Fort Lauderdale, FL, Amer. Meteor. Soc., 255–258.

  • Barrett, A. I., S. L. Gray, D. J. Kirshbaum, N. M. Roberts, D. M. Schultz, and J. G. Fairman Jr., 2015: Synoptic versus orographic control on stationary convective banding. Quart. J. Roy. Meteor. Soc., 141, 11011113, doi:10.1002/qj.2409.

    • Search Google Scholar
    • Export Citation
  • Bouallègue, Z. B., S. E. Theis, and C. Gebhardt, 2013: Enhancing COSMO-DE ensemble forecasts by inexpensive techniques. Meteor. Z., 22, 4959, doi:10.1127/0941-2948/2013/0374.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., and K. R. Mylne, 2009: Ensemble transform Kalman filter perturbations for a regional ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 757766, doi:10.1002/qj.404.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, doi:10.1002/qj.234.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 767776, doi:10.1002/qj.394.

    • Search Google Scholar
    • Export Citation
  • Briggs, W. M., and R. A. Levine, 1997: Wavelets and field forecast verification. Mon. Wea. Rev., 125, 13291341, doi:10.1175/1520-0493(1997)125<1329:WAFFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate. Bull. Amer. Meteor. Soc., 93, 18651877, doi:10.1175/BAMS-D-12-00018.1.

    • Search Google Scholar
    • Export Citation
  • Browning, K., A. Eccleston, and G. Monk, 1985: The use of satellite and radar imagery to identify persistent shower bands downwind of the North Channel. Meteor. Mag., 114 (1360), 325331.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, doi:10.1175/2009WAF2222222.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., M. Xue, and F. Kong, 2010: Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment. Wea. Forecasting, 25, 10521081, doi:10.1175/2010WAF2222390.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2011: Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon. Wea. Rev., 139, 14101418, doi:10.1175/2010MWR3624.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 hazardous weather testbed experimental forecast program spring experiment. Bull. Amer. Meteor. Soc., 93, 5574, doi:10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., R. G. Bullock, T. L. Jensen, M. Xue, and F. Kong, 2014: Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models. Wea. Forecasting, 29, 517542, doi:10.1175/WAF-D-13-00098.1.

    • Search Google Scholar
    • Export Citation
  • Clark, M. R., 2011: An observational study of the exceptional ‘Ottery St Mary’ thunderstorm of 30 October 2008. Meteor. Appl., 18, 137154, doi:10.1002/met.187.

    • Search Google Scholar
    • Export Citation
  • Cosma, S., E. Richard, and F. Miniscloux, 2002: The role of small-scale orographic features in the spatial distribution of precipitation. Quart. J. Roy. Meteor. Soc., 128, 7592, doi:10.1256/00359000260498798.

    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Hawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782, doi:10.1256/qj.04.101.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2008: Fuzzy verification of high-resolution gridded forecasts: A review and proposed framework. Meteor. Appl., 15, 5164, doi:10.1002/met.25.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689719, doi:10.1002/qj.49712253107.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., S. J. Weiss, and P. C. Banacos, 2003: Operational ensemble cloud model forecasts: Some preliminary results. Wea. Forecasting, 18, 953964, doi:10.1175/1520-0434(2003)018<0953:OECMFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairman, J. G., D. M. Schultz, D. J. Kirshbaum, S. L. Gray, and A. I. Barrett, 2015: A radar-based rainfall climatology of Great Britain and Ireland. Weather, 70, 153158, doi:10.1002/wea.2486.

    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430, doi:10.1175/2009WAF2222269.1.

    • Search Google Scholar
    • Export Citation
  • Golding, B., 2005: The Boscastle flood: Meteorological analysis of the conditions leading to the flooding on 16 August 2004. Weather, 60, 230235, doi:10.1256/wea.71.05.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Wea. Rev., 118, 14831506, doi:10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., D. J. Kirshbaum, S. E. Belcher, N. M. Roberts, and G. Leoncini, 2011: Ensemble predictability of an isolated mountain thunderstorm in a high-resolution model. Quart. J. Roy. Meteor. Soc., 137, 21242137, doi:10.1002/qj.877.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., D. J. Kirshbaum, N. M. Roberts, and G. Leoncini, 2013: Sensitivities of a squall line over central Europe in a convective-scale ensemble. Mon. Wea. Rev., 141, 112133, doi:10.1175/MWR-D-12-00013.1.

    • Search Google Scholar
    • Export Citation
  • Harris, D., E. Foufoula-Georgiou, K. K. Droegemeier, and J. J. Levit, 2001: Multiscale statistical properties of a high-resolution precipitation forecast. J. Hydrometeor., 2, 406418, doi:10.1175/1525-7541(2001)002<0406:MSPOAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. L., R. W. Scovell, and M. Kitchen, 2009: High-resolution precipitation estimates for hydrological uses. Proc. Inst. Civ. Eng. Water Manage., 162, 125135, doi:10.1680/wama.2009.162.2.125.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. L., K. Norman, C. Pierce, and N. Gaussiat, 2012: Radar products for hydrological applications in the UK. Proc. Inst. Civ. Eng. Water Manage., 165, 89103, doi:10.1680/wama.2012.165.2.89.

    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., Z. Liu, J.-F. Louis, and C. Grassoti, 1995: Distortion representation of forecast errors. Mon. Wea. Rev., 123, 27582770, doi:10.1175/1520-0493(1995)123<2758:DROFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hovmöller, E., 1949: The trough-and-ridge diagram. Tellus, 1, 6266, doi:10.1111/j.2153-3490.1949.tb01260.x.

  • Keil, C., and G. C. Craig, 2009: A displacement and amplitude score employing an optical flow technique. Wea. Forecasting, 24, 12971308, doi:10.1175/2009WAF2222247.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2005: Observations and modeling of banded orographic convection. J. Atmos. Sci., 62, 14631479, doi:10.1175/JAS3417.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., G. H. Bryan, R. Rotunno, and D. R. Durran, 2007a: The triggering of orographic rainbands by small-scale topography. J. Atmos. Sci., 64, 15301549, doi:10.1175/JAS3924.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., R. Rotunno, and G. H. Bryan, 2007b: The spacing of orographic rainbands triggered by small-scale topography. J. Atmos. Sci., 64, 42224245, doi:10.1175/2007JAS2335.1.

    • Search Google Scholar
    • Export Citation
  • Kong, F., K. K. Droegemeier, and N. L. Hickmon, 2006: Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part I: Comparison of coarse-and fine-grid experiments. Mon. Wea. Rev., 134, 807833, doi:10.1175/MWR3097.1.

    • Search Google Scholar
    • Export Citation
  • Kong, F., K. K. Droegemeier, and N. L. Hickmon, 2007: Multiresolution ensemble forecasts of an observed tornadic thunderstorm system. Part II: Storm-scale experiments. Mon. Wea. Rev., 135, 759782, doi:10.1175/MWR3323.1.

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, doi:10.1175/2008MWR2332.1.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, doi:10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., 1981: Topographically forced convergence in western Washington state. Mon. Wea. Rev., 109, 13351347, doi:10.1175/1520-0493(1981)109<1335:TFCIWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miniscloux, F., J. D. Creutin, and S. Anquetin, 2001: Geostatistical analysis of orographic rainbands. J. Appl. Meteor., 40, 18351854, doi:10.1175/1520-0450(2001)040<1835:GAOOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mylne, K., 2013: Scientific framework for the ensemble prediction system for the UKV. MOSAC Paper 18.6, Met Office, 12 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/q/0/MOSAC_18.6_Mylne.pdf.]

  • Novak, D. R., and B. A. Colle, 2012: Diagnosing snowband predictability using a multimodel ensemble system. Wea. Forecasting, 27, 565585, doi:10.1175/WAF-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Quart. J. Roy. Meteor. Soc., 127, 24732489, doi:10.1002/qj.49712757715.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., D. M. Schultz, B. A. Colle, and D. J. Stensrud, 2004: Toward improved prediction: High-resolution and ensemble modeling systems in operations. Wea. Forecasting, 19, 936949, doi:10.1175/1520-0434(2004)019<0936:TIPHAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., K. L. Swanson, and J. K. Ghorai, 2008: Synoptic control of mesoscale precipitating systems in the Pacific Northwest. Mon. Wea. Rev., 136, 34653476, doi:10.1175/2008MWR2264.1.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, doi:10.1002/qj.49711649210.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499, doi:10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Suarez, A., H. D. Reeves, D. Wheatley, and M. Coniglio, 2012: Comparison of ensemble Kalman filter-based forecasts to traditional ensemble and deterministic forecasts for a case study of banded snow. Wea. Forecasting, 27, 85105, doi:10.1175/WAF-D-11-00030.1.

    • Search Google Scholar
    • Export Citation
  • Surcel, M., I. Zawadzki, and M. Yau, 2014: On the filtering properties of ensemble averaging for storm-scale precipitation forecasts. Mon. Wea. Rev., 142, 10931105, doi:10.1175/MWR-D-13-00134.1.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., H. W. Lean, and J. Bornemann, 2013: The benefits of the Met Office variable resolution NWP model for forecasting convection. Meteor. Appl., 20, 417426, doi:10.1002/met.1300.

    • Search Google Scholar
    • Export Citation
  • Vié, B., O. Nuissier, and V. Ducrocq, 2011: Cloud-resolving ensemble simulations of Mediterranean heavy precipitating events: Uncertainty on initial conditions and lateral boundary conditions. Mon. Wea. Rev., 139, 403423, doi:10.1175/2010MWR3487.1.

    • Search Google Scholar
    • Export Citation
  • Warren, R. A., D. J. Kirshbaum, R. S. Plant, and H. W. Lean, 2014: A ‘Boscastle-type’ quasi-stationary convective system over the UK southwest peninsula. Quart. J. Roy. Meteor. Soc., 140, 240257, doi:10.1002/qj.2124.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., M. Paulat, M. Hagen, and C. Frei, 2008: SAL—A novel quantity measure for the verification of quantitative precipitation forecasts. Mon. Wea. Rev., 136, 44704487, doi:10.1175/2008MWR2415.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, R. W., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 16071636, doi:10.1002/qj.49712555707.

    • Search Google Scholar
    • Export Citation
  • Yoshizaki, M., T. Kato, Y. Tanaka, H. Takayama, Y. Shoji, and H. Seko, 2000: Analytical and numerical study of the 26 June 1998 orographic rainband observed in Western Kyushu, Japan. J. Meteor. Soc. Japan, 78 (6), 835856.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 0 0 0

The Utility of Convection-Permitting Ensembles for the Prediction of Stationary Convective Bands

View More View Less
  • 1 Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 2 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
  • | 3 MetOffice@Reading, University of Reading, Reading, United Kingdom
  • | 4 Centre for Atmospheric Science, School for Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom
Restricted access

Abstract

This study examines convection-permitting numerical simulations of four cases of terrain-locked quasi-stationary convective bands over the United Kingdom. For each case, a 2.2-km-grid-length, 12-member ensemble and a 1.5-km-grid-length deterministic forecast are analyzed, each with two different initialization times. Object-based verification is applied to determine whether the simulations capture the structure, location, timing, intensity, and duration of the observed precipitation. These verification diagnostics reveal that the forecast skill varies greatly between the four cases. Although the deterministic and ensemble simulations captured some aspects of the precipitation correctly in each case, they never simultaneously captured all of them satisfactorily. In general, the models predicted banded precipitation accumulations at approximately the correct time and location, but the precipitating structures were more cellular and less persistent than the coherent quasi-stationary bands that were observed. Ensemble simulations from the two different initialization times were not significantly different, which suggests a potential benefit of time-lagging subsequent ensembles to increase ensemble size. The predictive skill of the upstream larger-scale flow conditions and the simulated precipitation on the convection-permitting grids were strongly correlated, which suggests that more accurate forecasts from the parent ensemble should improve the performance of the convection-permitting ensemble nested within it.

Denotes Open Access content.

Corresponding author address: Andrew Barrett, Dept. of Meteorology, University of Reading, P.O. Box 243, Earley Gate, Reading RG6 6BB, United Kingdom. E-mail: a.i.barrett@reading.ac.uk

Abstract

This study examines convection-permitting numerical simulations of four cases of terrain-locked quasi-stationary convective bands over the United Kingdom. For each case, a 2.2-km-grid-length, 12-member ensemble and a 1.5-km-grid-length deterministic forecast are analyzed, each with two different initialization times. Object-based verification is applied to determine whether the simulations capture the structure, location, timing, intensity, and duration of the observed precipitation. These verification diagnostics reveal that the forecast skill varies greatly between the four cases. Although the deterministic and ensemble simulations captured some aspects of the precipitation correctly in each case, they never simultaneously captured all of them satisfactorily. In general, the models predicted banded precipitation accumulations at approximately the correct time and location, but the precipitating structures were more cellular and less persistent than the coherent quasi-stationary bands that were observed. Ensemble simulations from the two different initialization times were not significantly different, which suggests a potential benefit of time-lagging subsequent ensembles to increase ensemble size. The predictive skill of the upstream larger-scale flow conditions and the simulated precipitation on the convection-permitting grids were strongly correlated, which suggests that more accurate forecasts from the parent ensemble should improve the performance of the convection-permitting ensemble nested within it.

Denotes Open Access content.

Corresponding author address: Andrew Barrett, Dept. of Meteorology, University of Reading, P.O. Box 243, Earley Gate, Reading RG6 6BB, United Kingdom. E-mail: a.i.barrett@reading.ac.uk
Save