• Angevine, W. M., H. Jiang, and T. Mauritsen, 2010: Performance of an eddy diffusivity-mass flux scheme for shallow cumulus boundary layers. Mon. Wea. Rev., 138, 28952912, doi:10.1175/2010MWR3142.1.

    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., J. E. J. Eyre, and A. P. Lock, 2014: Seamless stratocumulus simulation across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, doi:10.1175/MWR-D-13-00229.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmospheric Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moisture convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheng, A., K.-M. Xu, and B. Stevens, 2010: Effects of resolution on the simulation of boundary-layer clouds and the partition of kinetic energy to subgrid scales. J. Adv. Model. Earth Syst., 2 (3), doi:10.3894/JAMES.2010.2.3.

    • Search Google Scholar
    • Export Citation
  • Ching, J., R. Rotunno, M. A. LeMone, A. Martilli, B. Kosovic, P. A. Jimenez, and J. Dudhia, 2014: Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models. Mon. Wea. Rev., 142, 32843302, doi:10.1175/MWR-D-13-00318.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Dorrestijn, J., D. T. Crommelin, A. P. Siebesma, and H. J. J. Jonker, 2013: Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data. Theor. Comput. Fluid Dyn., 27, 133148, doi:10.1007/s00162-012-0281-y.

    • Search Google Scholar
    • Export Citation
  • Efstathiou, G. A., and R. J. Beare, 2015: Quantifying and improving sub-grid diffusion in the boundary-layer grey zone. Quart. J. Roy. Meteor. Soc., 141, 30063017, doi:10.1002/qj.2585.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., R. S. Plant, T. H. M. Stein, R. J. Hogan, J. C. Nicol, H. W. Lean, C. Halliwell, and P. A. Clark, 2015: Mixing-length controls on high-resolution simulations of convective storms. Quart. J. Roy. Meteor. Soc., 141, 272284, doi:10.1002/qj.2356.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842, doi:10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Honnert, R., V. Masson, and F. Couvreux, 2011: A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci., 68, 31123131, doi:10.1175/JAS-D-11-061.1.

    • Search Google Scholar
    • Export Citation
  • Honnert, R., V. Masson, and F. Couvreux, 2014: What is new in the gray zone? 21st Symp. on Boundary Layers and Turbulence, Leeds, United Kingdom, Amer. Meteor. Soc., 17B.2. [Available online at https://ams.confex.com/ams/21BLT/webprogram/Paper248579.html.]

  • Hu, X.-M., J. W. Nielsen-Gammon, and F. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844, doi:10.1175/2010JAMC2432.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Q., J. H. Marsham, D. J. Parker, W. Tian, and T. Weckwerth, 2009: A comparison of roll and nonroll convection and the subsequent deepening moist convection: An LEM case study base on SCMS data. Mon. Wea. Rev., 137, 350365, doi:10.1175/2008MWR2450.1.

    • Search Google Scholar
    • Export Citation
  • Ito, J., H. Niino, M. Nakanishi, and C. H. Moeng, 2015: An extension of the Mellor-Yamada model to the terra incognita zone for dry convective mixed layers in the free convection regime. Bound.-Layer Meteor., 157, 2343, doi:10.1007/s10546-015-0045-5.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z., 1994: The step-mountain Eta coordinate model: Future developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., G. H. Bryan, and J. P. Hacker, 2007: Explicit numerical diffusion in the WRF model. Mon. Wea. Rev., 135, 38083824, doi:10.1175/2007MWR2100.1.

    • Search Google Scholar
    • Export Citation
  • Langhans, W., J. Schmidli, and C. Schär, 2012: Mesoscale impacts of explicit numerical diffusion in a convection-permitting model. Mon. Wea. Rev., 140, 226244, doi:10.1175/2011MWR3650.1.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., M. Tewari, F. Chen, and J. Dudhia, 2013: Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations. Mon. Wea. Rev., 141, 3054, doi:10.1175/MWR-D-12-00106.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Z. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysics and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 48194838, doi:10.1175/2008MWR2366.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, doi:10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, doi:10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • Parodi, A., and S. Tanelli, 2010: Influence of turbulence parameterizations on high-resolution numerical modeling of tropical convection observed during the TC4 field campaign. J. Geophys. Res., 115, D00J14, doi:10.1029/2009JD013302.

    • Search Google Scholar
    • Export Citation
  • Pergaud, J., V. Masson, S. Malardel, and F. Couvreux, 2009: A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Bound.-Layer Meteor., 132, 83106, doi:10.1007/s10546-009-9388-0.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007a: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, doi:10.1175/JAM2539.1.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007b: A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. J. Appl. Meteor. Climatol., 46, 13961409, doi:10.1175/JAM2534.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., Y. Chen, W. Wang, C. Davis, J. Dudhia, and G. J. Holland, 2009: Large-eddy simulation of an idealized tropical cyclone. Bull. Amer. Meteor. Soc., 90, 17831788, doi:10.1175/2009BAMS2884.1.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261281, doi:10.1007/s10546-010-9583-z.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2013: Analysis on resolved and parameterized vertical transports in the convective boundary layers at the gray-zone resolutions. J. Atmos. Sci., 70, 32483261, doi:10.1175/JAS-D-12-0290.1.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250271, doi:10.1175/MWR-D-14-00116.1.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., S.-Y. Hong, and J. Dudhia, 2012: Impacts of the lowest model level height on the performance of planetary boundary layer parameterizations. Mon. Wea. Rev., 140, 664682, doi:10.1175/MWR-D-11-00027.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Steeneveld, G. J., T. Mauritsen, E. I. F. de Bruijn, J. V.-G. de Arellano, G. Svensson, and A. A. M. Holtslag, 2008: Evaluation of limited-area models for the representation of the diurnal cycle and contrasting nights in CASES-99. J. Appl. Meteor. Climatol., 47, 869887, doi:10.1175/2007JAMC1702.1.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, doi:10.1175/JAS-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Sykes, R. I., and D. S. Henn, 1989: Large-eddy simulation of turbulent sheared convection. J. Atmos. Sci., 46, 11061118, doi:10.1175/1520-0469(1989)046<1106:LESOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, doi:10.1007/BF00122760.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

  • Zhou, B., J. S. Simon, and F. K. Chow, 2014: The convective boundary layer in the terra incognita. J. Atmos. Sci., 71, 25452563, doi:10.1175/JAS-D-13-0356.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., K. Menelaou, and Z. Zhu, 2014: Impact of subgrid-scale vertical turbulent mixing on eyewall asymmetric structures and mesovortices of hurricanes. Quart. J. Roy. Meteor. Soc., 140, 416438, doi:10.1002/qj.2147.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 125 125 125
PDF Downloads 17 17 17

Evaluation of PBL Parameterizations in WRF at Subkilometer Grid Spacings: Turbulence Statistics in the Dry Convective Boundary Layer

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

Planetary boundary layer (PBL) parameterizations in mesoscale models have been developed for horizontal resolutions that cannot resolve any turbulence in the PBL, and evaluation of these parameterizations has been focused on profiles of mean and parameterized flux. Meanwhile, the recent increase in computing power has been allowing numerical weather prediction (NWP) at horizontal grid spacings finer than 1 km, at which kilometer-scale large eddies in the convective PBL are partly resolvable. This study evaluates the performance of convective PBL parameterizations in the Weather Research and Forecasting (WRF) Model at subkilometer grid spacings. The evaluation focuses on resolved turbulence statistics, considering expectations for improvement in the resolved fields by using the fine meshes. The parameterizations include four nonlocal schemes—Yonsei University (YSU), asymmetric convective model 2 (ACM2), eddy diffusivity mass flux (EDMF), and total energy mass flux (TEMF)—and one local scheme, the Mellor–Yamada–Nakanishi–Niino (MYNN) level-2.5 model.

Key findings are as follows: 1) None of the PBL schemes is scale-aware. Instead, each has its own best performing resolution in parameterizing subgrid-scale (SGS) vertical transport and resolving eddies, and the resolution appears to be different between heat and momentum. 2) All the selected schemes reproduce total vertical heat transport well, as resolved transport compensates differences of the parameterized SGS transport from the reference SGS transport. This interaction between the resolved and SGS parts is not found in momentum. 3) Those schemes that more accurately reproduce one feature (e.g., thermodynamic transport, momentum transport, energy spectrum, or probability density function of resolved vertical velocity) do not necessarily perform well for other aspects.

Current affiliation: NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and University Corporation for Atmospheric Research, Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Hyeyum Hailey Shin, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: hyeyum.shin@noaa.gov

Abstract

Planetary boundary layer (PBL) parameterizations in mesoscale models have been developed for horizontal resolutions that cannot resolve any turbulence in the PBL, and evaluation of these parameterizations has been focused on profiles of mean and parameterized flux. Meanwhile, the recent increase in computing power has been allowing numerical weather prediction (NWP) at horizontal grid spacings finer than 1 km, at which kilometer-scale large eddies in the convective PBL are partly resolvable. This study evaluates the performance of convective PBL parameterizations in the Weather Research and Forecasting (WRF) Model at subkilometer grid spacings. The evaluation focuses on resolved turbulence statistics, considering expectations for improvement in the resolved fields by using the fine meshes. The parameterizations include four nonlocal schemes—Yonsei University (YSU), asymmetric convective model 2 (ACM2), eddy diffusivity mass flux (EDMF), and total energy mass flux (TEMF)—and one local scheme, the Mellor–Yamada–Nakanishi–Niino (MYNN) level-2.5 model.

Key findings are as follows: 1) None of the PBL schemes is scale-aware. Instead, each has its own best performing resolution in parameterizing subgrid-scale (SGS) vertical transport and resolving eddies, and the resolution appears to be different between heat and momentum. 2) All the selected schemes reproduce total vertical heat transport well, as resolved transport compensates differences of the parameterized SGS transport from the reference SGS transport. This interaction between the resolved and SGS parts is not found in momentum. 3) Those schemes that more accurately reproduce one feature (e.g., thermodynamic transport, momentum transport, energy spectrum, or probability density function of resolved vertical velocity) do not necessarily perform well for other aspects.

Current affiliation: NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, and University Corporation for Atmospheric Research, Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Hyeyum Hailey Shin, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal Campus, 201 Forrestal Rd., Princeton, NJ 08540. E-mail: hyeyum.shin@noaa.gov
Save