• Aemisegger, F., 2009: Tropical cyclone forecast verification: Three approaches to the assessment of the ECMWF model. M.S. thesis, Department of Environmental Systems Science, Institute for Atmospheric and Climate Science, Eidgenssische Technische Hochschule Zürich, Zürich, Switzerland, 89 pp. [Available online at http://www.iac.ethz.ch/doc/publications/TC_MasterThesis.pdf.]

  • Bauer, P., A. J. Geer, P. Lopez, and D. Salmond, 2010: Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Quart. J. Roy. Meteor. Soc., 136, 18681885, doi:10.1002/qj.659.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., W. E. Bracken, J. Molinari, C. S. Velden, and P. G. Black, 2000: Environmental influences on the rapid intensification of Hurricane Opal (1995) over the Gulf of Mexico. Mon. Wea. Rev., 128, 322352, doi:10.1175/1520-0493(2000)128<0322:EIOTRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., Y. Duan, and L. K. Shay, 2001: Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. J. Atmos. Sci., 58, 154172, doi:10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cione, J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, doi:10.1175//2562.1.

    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., C. M. Nguyen, and M. J. Reeder, 2008: Downstream development during the rapid intensification of Hurricanes Opal and Katrina: The distant trough interaction problem. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 9B.4. [Available online at https://ams.confex.com/ams/28Hurricanes/techprogram/paper_138060.htm.]

  • Davidson, N. E., and Coauthors, 2014: ACCESS-TC: Vortex specification, 4DVAR initialization, verification, and structure diagnostics. Mon. Wea. Rev., 142, 12651289, doi:10.1175/MWR-D-13-00062.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic Basin. Wea. Forecasting, 9, 209220, doi:10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J.-J. Baik, and J. Kaplan, 1993: Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 11331147, doi:10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, doi:10.1175/BAMS-D-12-00240.1.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., C. Basdevant, H. Bellenger, G. Reverdin, J. Vialard, and A. Vargas, 2009: The Aeroclipper: A new device to explore convective systems and cyclones. Bull. Amer. Meteor. Soc., 90, 6371, doi:10.1175/2008BAMS2500.1.

    • Search Google Scholar
    • Export Citation
  • Dvorak, V., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 47 pp.

  • Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179196, doi:10.1146/annurev.fl.23.010191.001143.

  • Frank, W., and E. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., 2008: 2007 National Hurricane Center forecast verification report. NOAA Tech. Rep., 68 pp.

  • Fujiwhara, S., 1921: The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287292, doi:10.1002/qj.49704720010.

    • Search Google Scholar
    • Export Citation
  • Ge, X., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 38593875, doi:10.1175/JAS-D-13-066.1.

    • Search Google Scholar
    • Export Citation
  • Gu, J. F., Z.-M. Tan, and X. Qiu, 2015: Effects of vertical wind shear on inner-core thermodynamics of an idealized simulated tropical cyclone. J. Atmos. Sci., 72, 511530, doi:10.1175/JAS-D-14-0050.1.

    • Search Google Scholar
    • Export Citation
  • Hanley, D., J. Molinari, and D. Keyser, 2001: A compositive study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 25702584, doi:10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heming, J., and J. Goerss, 2010: Track and structure forecasts of tropical cyclones. Global Perspectives on Tropical Cyclones, J. C. L. Chan and J. D. Kepert, Eds., World Scientific, 287–323.

  • Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, doi:10.1175/2010MWR3185.1.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, doi:10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, doi:10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, doi:10.1175/2009WAF2222280.1.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and J. L. Evans, 2002: Idealized numerical simulations of hurricane–trough interaction. Mon. Wea. Rev., 130, 22102227, doi:10.1175/1520-0493(2002)130<2210:INSOHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leroux, M.-D., M. Plu, D. Barbary, F. Roux, and P. Arbogast, 2013: Dynamical and physical processes leading to tropical cyclone intensification under upper-level trough forcing. J. Atmos. Sci., 70, 25472565, doi:10.1175/JAS-D-12-0293.1.

    • Search Google Scholar
    • Export Citation
  • Leroux, M.-D., and Coauthors, 2014: Intensity change: External influences. Rapporteur Rep., Topic 2.5, Eighth WMO Int. Workshop on Tropical Cyclones (IWTC-VIII), Publ. WMO, Topic 2.5, Jeju, Korea, WMO, 2.5.0–2.5.8. [Available online at http://www.wmo.int/pages/prog/arep/wwrp/new/documents/Topic2.5_IntensityChange_ExternalInfluences.pdf.]

  • Marquet, P., 2014: On the definition of a moist-air potential vorticity. Quart. J. Roy. Meteor. Soc., 140, 917929, doi:10.1002/qj.2182.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy momentum fluxes. J. Atmos. Sci., 46, 10931105, doi:10.1175/1520-0469(1989)046<1093:EIOHIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., S. Skubis, and D. Vollaro, 1995: External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci., 52, 35933606, doi:10.1175/1520-0469(1995)052<3593:EIOHIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., S. Skubis, D. Vollaro, F. Alsheimer, and H. E. Willoughby, 1998: Potential vorticity analysis of tropical cyclone intensification. J. Atmos. Sci., 55, 26322644, doi:10.1175/1520-0469(1998)055<2632:PVAOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory of vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435465, doi:10.1002/qj.49712353810.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, doi:10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Montroty, R., F. Rabier, S. Westrelin, G. Faure, and N. Viltard, 2008: Impact of wind bogus and cloud- and rain-affected SSM/I data on tropical cyclone analyses and forecasts. Quart. J. Roy. Meteor. Soc., 134, 16731699, doi:10.1002/qj.308.

    • Search Google Scholar
    • Export Citation
  • Nguyen, M. C., M. J. Reeder, N. E. Davidson, R. K. Smith, and M. T. Montgomery, 2011: Inner-core vacillation cycles during the intensification of Hurricane Katrina. Quart. J. Roy. Meteor. Soc., 137, 829844, doi:10.1002/qj.823.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, doi:10.1175/JAS3988.1.

    • Search Google Scholar
    • Export Citation
  • Pantillon, F., J.-P. Chaboureau, and E. Richard, 2016: Vortex–vortex interaction between Hurricane Nadine (2012) and an Atlantic cut-off dropping the predictability over the Mediterranean. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2635, in press.

    • Search Google Scholar
    • Export Citation
  • Patla, J. E., D. Stevens, and G. M. Barnes, 2009: A conceptual model for the influence of TUTT cells on tropical cyclone motion in the northwest Pacific Ocean. Wea. Forecasting, 24, 12151235, doi:10.1175/2009WAF2222181.1.

    • Search Google Scholar
    • Export Citation
  • Pfeffer, R. L., and M. Challa, 1981: A numerical study of the role of eddy fluxes of momentum in the development of Atlantic hurricanes. J. Atmos. Sci., 38, 23932398, doi:10.1175/1520-0469(1981)038<2393:ANSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plu, M., P. Arbogast, and A. Joly, 2008: A wavelet representation of synoptic-scale coherent structures. J. Atmos. Sci., 65, 31163138, doi:10.1175/2008JAS2618.1.

    • Search Google Scholar
    • Export Citation
  • Puri, K., and Coauthors, 2013: Operational implementation of the ACCESS numerical weather prediction systems. Aust. Meteor. Oceanogr. J., 63, 265284.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., and S. C. Jones, 2014: Interaction of a tropical cyclone with a high-amplitude, midlatitude wave pattern: Waviness analysis, trough deformation and track bifurcation. Quart. J. Roy. Meteor. Soc., 140, 13621376, doi:10.1002/qj.2221.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2013: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys., 13, 327346, doi:10.5194/acp-13-327-2013.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and R. L. Elsberry, 2007: Simulations of the extratropical transition of tropical cyclones: Phasing between the upper-level trough and tropical systems. Mon. Wea. Rev., 135, 862876, doi:10.1175/MWR3303.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and D. Möller, 2003: Influence of atmospheric asymmetries on the intensification of Hurricane Opal: Piecewise PV inversion diagnosis of a GFDL model forecast. Mon. Wea. Rev., 131, 16371649, doi:10.1175//2552.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and D. Möller, 2005: Influence of atmospheric asymmetries on the intensification of GFDL model forecast hurricanes. Mon. Wea. Rev., 133, 28602875, doi:10.1175/MWR3008.1.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, doi:10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shieh, O. H., M. Fiorino, M. E. Kucas, and B. Wang, 2013: Extreme rapid intensification of Typhoon Vicente (2012) in the South China Sea. Wea. Forecasting, 28, 15781587, doi:10.1175/WAF-D-13-00076.1.

    • Search Google Scholar
    • Export Citation
  • Shu, S., Y. Wang, and L. Bai, 2013: Insight into the role of lower-layer vertical wind shear in tropical cyclone intensification over the western North Pacific. Acta Meteor. Sin., 27, 356363, doi:10.1007/s13351-013-0310-9.

    • Search Google Scholar
    • Export Citation
  • Shu, S., F. Zhang, J. Ming, and Y. Wang, 2014: Environmental influences on the intensity changes of tropical cyclones over the western North Pacific. Atmos. Chem. Phys., 14, 63296342, doi:10.5194/acp-14-6329-2014.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, doi:10.1175/BAMS-D-11-00165.1.

    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2014: Effect of environmental shear, sea-surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. J. Adv. Model. Earth Syst., 6, 384404, doi:10.1002/2014MS000314.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, G. Madec, J. Vialard, G. Samson, N. C. Jourdain, C. E. Menkes, and S. Jullien, 2012: Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C02020, doi:10.1029/2011JC007396.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12391262, doi:10.1175/1520-0469(2002)059<1239:VRWIAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Rao, Z.-M. Tan, and D. Schönemann, 2015: A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the western North Pacific. Mon. Wea. Rev., 143, 34343453, doi:10.1175/MWR-D-15-0049.1.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, doi:10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • WMO, 2007: Sixth WMO International Workshop on Tropical Cyclones (IWTC-VI). Publ. WMO/TD-1383, WWRP 2007-1, San José, Costa Rica, World Meteorological Organization, 92 pp.

  • WMO, 2015: Eighth International Workshop on Tropical Cyclones (IWTC-VIII). Publ. WMO, WWRP 2015-1, Jeju, Korea,World Meteorological Organization. [Available online at http://www.wmo.int/pages/prog/arep/wwrp/tmr/IWTC8.html.]

  • Yessad, K., 2015: Basics about ARPEGE/IFS, ALADIN and AROME in the cycle 42 of ARPEGE/IFS. Tech. reference manual, August 2015, Météo-France/CNRM/GMAP/ALGO, 64 pp. [Available at http://www.cnrm.meteo.fr/gmapdoc/spip.php?article29.]

  • Zeng, Z., Y. Wang, and L. Chen, 2010: A statistical analysis of vertical shear effect on tropical cyclone intensity change in the North Atlantic. Geophys. Res. Lett., 37, L02802, doi:10.1029/2009GL041788.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, doi:10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, doi:10.1175/JAS-D-12-0133.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 21 21 21

On the Sensitivity of Tropical Cyclone Intensification under Upper-Level Trough Forcing

View More View Less
  • 1 Laboratoire de l’Atmosphère et des Cyclones, Unité mixte 8105, CNRS/Météo-France/Université de La Réunion, Sainte Clotilde, La Réunion, France
  • | 2 CNRM-GAME, Météo-France/CNRS, Toulouse, France
  • | 3 Laboratoire d’Aérologie, UMR 5560, Université de Toulouse/CNRS, Toulouse, France
Restricted access

Abstract

This study is part of the efforts undertaken to resolve the “bad trough/good trough” issue for tropical cyclone (TC) intensity changes and to improve the prediction of these challenging events. Sensitivity experiments are run at 8-km resolution with vortex bogusing to extend the previous analysis of a real case of TC–trough interaction (Dora in 2007). The initial position and intensity of the TC are modified, leaving the trough unchanged to describe a realistic environment. Simulations are designed to analyze the sensitivity of TC prediction to both the variety of TC–trough configurations and the current uncertainty in model analysis of TC intensity and position.

Results show that TC intensification under upper-level forcing is greater for stronger vortices. The timing and geometry of the interaction between the two cyclonic potential vorticity anomalies associated with the cutoff low and the TC also play a major role in storm intensification. The intensification rate increases when the TC (initially located 12° northwest of the trough) is displaced 1° closer. By allowing a gradual deformation and equatorward tilting of the trough, both scenarios foster an extended “inflow channel” of cyclonic vorticity at midlevels toward the vortex inner core. Conversely, unfavorable interaction is found for vortices displaced 3° or 4° east or northeast. Variations in environmental forcing relative to the reference simulation illustrate that the relationship between intensity change and the 850–200-hPa wind shear is not systematic and that the 200-hPa divergence, 335–350-K mean potential vorticity, or 200-hPa relative eddy momentum fluxes may be better predictors of TC intensification during TC–trough interactions.

Corresponding author address: Marie-Dominique Leroux, Cellule Recherche Cyclones, Météo-France DIROI, 50 Boulevard du Chaudron, 97491 Sainte Clotilde CEDEX, La Réunion, France. E-mail: marie-dominique.leroux@meteo.fr

Abstract

This study is part of the efforts undertaken to resolve the “bad trough/good trough” issue for tropical cyclone (TC) intensity changes and to improve the prediction of these challenging events. Sensitivity experiments are run at 8-km resolution with vortex bogusing to extend the previous analysis of a real case of TC–trough interaction (Dora in 2007). The initial position and intensity of the TC are modified, leaving the trough unchanged to describe a realistic environment. Simulations are designed to analyze the sensitivity of TC prediction to both the variety of TC–trough configurations and the current uncertainty in model analysis of TC intensity and position.

Results show that TC intensification under upper-level forcing is greater for stronger vortices. The timing and geometry of the interaction between the two cyclonic potential vorticity anomalies associated with the cutoff low and the TC also play a major role in storm intensification. The intensification rate increases when the TC (initially located 12° northwest of the trough) is displaced 1° closer. By allowing a gradual deformation and equatorward tilting of the trough, both scenarios foster an extended “inflow channel” of cyclonic vorticity at midlevels toward the vortex inner core. Conversely, unfavorable interaction is found for vortices displaced 3° or 4° east or northeast. Variations in environmental forcing relative to the reference simulation illustrate that the relationship between intensity change and the 850–200-hPa wind shear is not systematic and that the 200-hPa divergence, 335–350-K mean potential vorticity, or 200-hPa relative eddy momentum fluxes may be better predictors of TC intensification during TC–trough interactions.

Corresponding author address: Marie-Dominique Leroux, Cellule Recherche Cyclones, Météo-France DIROI, 50 Boulevard du Chaudron, 97491 Sainte Clotilde CEDEX, La Réunion, France. E-mail: marie-dominique.leroux@meteo.fr
Save