• Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Austin, R. T., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114, D00A23, doi:10.1029/2008JD010049.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J. P. Pinty, and P. Mascart, 1993: The use of partial cloudiness in a warm-rain parameterization: A subgrid-scale precipitation scheme. Mon. Wea. Rev., 121, 33013311, doi:10.1175/1520-0493(1993)121<3301:TUOPCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byun, Y.-H., and S.-Y. Hong, 2007: Improvements in the subgrid-scale representation of moist convection in a cumulus parameterization scheme: The single-column test and its impact on seasonal prediction. Mon. Wea. Rev., 135, 21352154, doi:10.1175/MWR3397.1.

    • Search Google Scholar
    • Export Citation
  • Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 32993310, doi:10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., R. J. Hogan, R. M. Forbes, A. Bodas-Salcedo, and T. H. M. Stein, 2011: Evaluation of ice cloud representation in the ECMWF and UK Met Office models using CloudSat and CALIPSO data. Quart. J. Roy. Meteor. Soc., 137, 20642078, doi:10.1002/qj.882.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., C. Jakob, M. Dix, A. Protat, and G. Roff, 2012: Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP-ICE. Quart. J. Roy. Meteor. Soc., 138, 734754, doi:10.1002/qj.954.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and G. A. Isaac, 2007: Cloud fraction parameterization as a function of mean cloud water content and its variance using in-situ observations. Geophys. Res. Lett., 34, L07801, doi:10.1029/2006GL028223.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, P. J. Rasch, and M. J. Iacono, 2004: Antarctic clouds and radiation within the NCAR climate models. J. Climate, 17, 11981212, doi:10.1175/1520-0442(2004)017<1198:ACARWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., C. Jakob, and A. J. Illingworth, 2001: Comparison of ECMWF winter-season cloud fraction with radar-derived values. J. Appl. Meteor., 40, 513525, doi:10.1175/1520-0450(2001)040<0513:COEWSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., D. P. Donovan, C. Tinel, M. A. Brooks, D. Bouniol, A. J. Illingworth, and J. P. V. Poiares Baptista, 2006: Independent evaluation of the ability of spaceborne radar and lidar to retrieve the microphysical and radiative properties of clouds. J. Atmos. Oceanic Technol., 23, 211227, doi:10.1175/JTECH1837.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 14811496, doi:10.1002/qj.665.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice-microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Choi, E.-C. Chang, H. Park, and Y.-J. Kim, 2008: Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523531, doi:10.1175/2007WAF2007030.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Jang, H. H. Shin, and J. Lee, 2012: An explicitly-coupled shallow convection parameterization with planetary boundary processes. Preprints, 12th WRF Workshop, Boulder, CO, NCAR, P50. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2012/abstracts/p50.htm.]

  • Hong, S.-Y., and Coauthors, 2013: The Global/Regional Integrated Model system (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219243, doi:10.1007/s13143-013-0023-0.

    • Search Google Scholar
    • Export Citation
  • Im, E., C. Wu, and S. L. Durden, 2007: Cloud profiling radar for the CloudSat mission. 2005 IEEE Int. Radar Conf., Arlington, VA, IEEE, 483–486, doi:10.1109/RADAR.2005.1435874.

  • Jakob, C., and S. A. Klein, 2000: A parameterization of the effects of cloud and precipitation overlap for use in general-circulation models. Quart. J. Roy. Meteor. Soc., 126, 25252544, doi:10.1002/qj.49712656809.

    • Search Google Scholar
    • Export Citation
  • Jang, J., and S.-Y. Hong, 2014: Quantitative forecast experiment of a heavy rainfall event over Korea in a global model: Horizontal resolution versus lead time issues. Meteor. Atmos. Phys., 124, 113127, doi:10.1007/s00703-014-0312-x.

    • Search Google Scholar
    • Export Citation
  • Jeon, J.-H., S.-Y. Hong, H.-Y. Chun, and I.-S. Song, 2010: Test of a convectively forced gravity wave drag parameterization in a general circulation model. Asia-Pac. J. Atmos. Sci., 46, 110, doi:10.1007/s13143-010-0001-8.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, doi:10.1029/2009JD011773.

    • Search Google Scholar
    • Export Citation
  • Kim, E.-J., and S.-Y. Hong, 2010: Impact of air-sea interaction on East Asian summer monsoon climate in WRF. J. Geophys. Res., 115, D19118, doi:10.1029/2009JD013253.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 18751902, doi:10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, 2013: Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens., 51, 38263852, doi:10.1109/TGRS.2012.2227333.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142529, doi:10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koo, M.-S., and S.-Y. Hong, 2013: Double Fourier series dynamical core with hybrid sigma-pressure vertical coordinate. Tellus, 65A, 19851, doi:10.3402/tellusa.v65i0.19851.

    • Search Google Scholar
    • Export Citation
  • Lazarus, S. M., S. K. Krueger, and S. A. Frisch, 1999: An evaluation of the Xu–Randall cloud fraction parameterization using ASTEX data. Preprints, 13th Symp. on Boundary Layers and Turbulence, Amer. Meteor. Soc., 8.1. [Available online at https://ams.confex.com/ams/older/99annual/abstracts/1413.htm.]

  • Liou, K.-N., and S.-C. Ou, 1989: The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective. J. Geophys. Res., 94, 85998607, doi:10.1029/JD094iD06p08599.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., S. A. Ackerman, B. C. Maddux, J. R. Key, and R. A. Frey, 2010: Errors in cloud detection over the Arctic using a satellite imager and implications for observing feedback mechanisms. J. Climate, 23, 18941907, doi:10.1175/2009JCLI3386.1.

    • Search Google Scholar
    • Export Citation
  • Lynch, D. K., 1996: Cirrus clouds: Their role in climate and global change. Acta Astronaut., 38, 859863, doi:10.1016/S0094-5765(96)00098-7.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., H. W. Barker, J. N. S. Cole, M. J. Iacono, and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF Integrated Forecasting System. Mon. Wea. Rev., 136, 47734798, doi:10.1175/2008MWR2363.1.

    • Search Google Scholar
    • Export Citation
  • Mueller, R., J. Trentmann, C. Trager-Chatterjee, R. Posselt, and R. Stockli, 2011: The role of the effective cloud albedo for climate monitoring and analysis. Remote Sens., 3, 23052320, doi:10.3390/rs3112305.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, D. J. Posselt, and S. C. van den Heever, 2013: Multiple satellite observations of cloud cover in extratropical cyclones. J. Geophys. Res. Atmos., 118, 99829996, doi:10.1002/jgrd.50718.

    • Search Google Scholar
    • Export Citation
  • NOAA/National Centers for Environmental Prediction, 2000: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999 (updated daily). National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed July 2014, doi:10.5065/D6M043C6.

  • Park, H., and S.-Y. Hong, 2007: An evaluation of a mass-flux cumulus parameterization scheme in the KMA global forecast system. J. Meteor. Soc. Japan, 85, 151169, doi:10.2151/jmsj.85.151.

    • Search Google Scholar
    • Export Citation
  • Rybka, H., and H. Tost, 2014: Uncertainties in future climate predictions due to convection parameterisations. Atmos. Chem. Phys., 14, 55615576, doi:10.5194/acp-14-5561-2014.

    • Search Google Scholar
    • Export Citation
  • Shimpo, A., M. Kanamitsu, S. F. Iacobellis, and S.-Y. Hong, 2008: Comparison of four cloud schemes in simulating the seasonal mean field forced by the observed sea surface temperature. Mon. Wea. Rev., 136, 25572575, doi:10.1175/2007MWR2179.1.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., and J. M. Slingo, 1991: Response of the National Center for Atmospheric Research Community Climate Model to improvements in the representation of clouds. J. Geophys. Res., 96, 15 34115 357, doi:10.1029/91JD00930.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899927, doi:10.1002/qj.49711347710.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water-content in a general-circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, doi:10.1002/qj.49711649210.

    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., J. Delanoë, and R. J. Hogan, 2011: A comparison among four different retrieval methods for ice-cloud properties using data from CloudSat, CALIPSO, and MODIS. J. Appl. Meteor. Climatol., 50, 19521969, doi:10.1175/2011JAMC2646.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-TRAIN: A new dimension to space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., 2001: Cloud fraction and relative humidity in a prognostic cloud fraction scheme. Mon. Wea. Rev., 129, 17501753, doi:10.1175/1520-0493(2001)129<1750:CFARHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, doi:10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942, doi:10.1175/1520-0469(2002)059<1917:APPFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tost, H., and Coauthors, 2010: Uncertainties in atmospheric chemistry modeling due to convection parameterizations and subsequent scavenging. Atmos. Chem. Phys., 10, 19311951, doi:10.5194/acp-10-1931-2010.

    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and N. A. McFarlane, 2002: Parameterization of the bulk effects of lateral and cloud-top entrainment in transient shallow cumulus clouds. J. Atmos. Sci., 59, 14051429, doi:10.1175/1520-0469(2002)059<1405:POTBEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., H. Xu, and S.-P. Xie, 2004: Regional model simulations of marine boundary layer clouds over the southeast Pacific off South America. Part II: Sensitivity experiments. Mon. Wea. Rev., 132, 26502668, doi:10.1175/MWR2812.1.

    • Search Google Scholar
    • Export Citation
  • Wetzel, M. A., and G. T. Bates, 1995: Comparison of simulated cloud cover with satellite observations over the western United States. J. Climate, 8, 296314, doi:10.1175/1520-0442(1995)008<0296:COSCCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008a: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 20932107, doi:10.1002/qj.333.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, C. J. Morcrette, and A. Bodas-Salcedo, 2008b: PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations. Quart. J. Roy. Meteor. Soc., 134, 21092125, doi:10.1002/qj.332.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2000: Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data. J. Atmos. Sci., 57, 18881905, doi:10.1175/1520-0469(2000)057<1888:RBTWCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53, 30843102, doi:10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yhang, Y.-B., and S.-Y. Hong, 2008: Improved physical processes in a regional climate model and their impact on the simulated summer monsoon circulations over East Asia. J. Climate, 21, 963979, doi:10.1175/2007JCLI1694.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 6 6 6

A Revised Prognostic Cloud Fraction Scheme in a Global Forecasting System

View More View Less
  • 1 Korea Institute of Atmospheric Prediction Systems, Seoul, South Korea
Restricted access

Abstract

In this study, a revised prognostic cloud fraction scheme for atmospheric models is proposed and its performance is evaluated with a diagnostic cloud fraction scheme. A revision is proposed through a direct linkage between hydrometeors in the cumulus parameterization scheme and the amount of predicted cloud fractions. Cloud fractions that are determined via the prognostic cloud fraction scheme appear to be more realistic than those determined via a diagnostic cloud fraction scheme when both are compared with satellite data. In a medium-range forecast test bed, the biases of large-scale features such as temperature, geopotential height, and mean sea level pressure are moderately reduced when the prognostic cloud fraction scheme is used.

Corresponding author address: Song-You Hong, Korea Institute of Atmospheric Prediction Systems, 4F, Hankuk Computer Building, 35 Boramae-Ro 5 Gil, Dongjak-Gu, Seoul 07071, South Korea. E-mail: songyou.hong@kiaps.org

Abstract

In this study, a revised prognostic cloud fraction scheme for atmospheric models is proposed and its performance is evaluated with a diagnostic cloud fraction scheme. A revision is proposed through a direct linkage between hydrometeors in the cumulus parameterization scheme and the amount of predicted cloud fractions. Cloud fractions that are determined via the prognostic cloud fraction scheme appear to be more realistic than those determined via a diagnostic cloud fraction scheme when both are compared with satellite data. In a medium-range forecast test bed, the biases of large-scale features such as temperature, geopotential height, and mean sea level pressure are moderately reduced when the prognostic cloud fraction scheme is used.

Corresponding author address: Song-You Hong, Korea Institute of Atmospheric Prediction Systems, 4F, Hankuk Computer Building, 35 Boramae-Ro 5 Gil, Dongjak-Gu, Seoul 07071, South Korea. E-mail: songyou.hong@kiaps.org
Save