• Aonashi, K., and Coauthors, 2009: GSMaP passive, microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119136.

    • Search Google Scholar
    • Export Citation
  • Bao, J., S. Michelson, P. Neiman, F. Ralph, and J. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080, doi:10.1175/MWR3123.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J., 1955: The use of the primitive equations of motion in numerical prediction. Tellus, 7A, 2226, doi:10.1111/j.2153-3490.1955.tb01138.x.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, doi:10.1175/BAMS-D-14-00031.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, doi:10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., R. M. Trigo, P. Ribera, and J. A. Garcia, 2007: Editorial: Special issue on cut-off low systems (COL). Meteor. Atmos. Phys., 96, 12, doi:10.1007/s00703-006-0216-5.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., R. Nieto, M. Vázquez, and D. A. Lavers, 2014: Atmospheric rivers: A mini-review. Front Earth Sci., 2, doi:10.3389/feart.2014.00002.

    • Search Google Scholar
    • Export Citation
  • Hamada, A., Y. N. Takayabu, C. Liu, and E. J. Zipser, 2015: Weak linkage between the heaviest rainfall and tallest storms. Nat. Commun., 6, 6213, doi:10.1038/ncomms7213.

    • Search Google Scholar
    • Export Citation
  • Hirota, N., Y. N. Takayabu, M. Watanabe, M. Kimoto, and M. Chikira, 2014: Role of convective entrainment in spatial distributions of and temporal variations in precipitation over tropical oceans. J. Climate, 27, 87078723, doi:10.1175/JCLI-D-13-00701.1.

    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., 2014: Influence of upper tropospheric disturbances on the synoptic variability of precipitation and moisture transport over summertime East Asia and the northwestern Pacific. J. Meteor. Soc. Japan, 92, 519541, doi:10.2151/jmsj.2014-602.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Hu, K., R. Lu, and D. Wang, 2010: Seasonal climatology of cut-off lows and associated precipitation patterns over northeast China. Meteor. Atmos. Phys., 106, 3748, doi:10.1007/s00703-009-0049-0.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and J. E. Martin, 2005: Tropical plumes and extreme precipitation in subtropical and tropical West Africa. Quart. J. Roy. Meteor. Soc., 131, 23372365, doi:10.1256/qj.04.148.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., H. Wernli, and G. Gläser, 2013: A global climatology of tropical moisture exports. J. Climate, 26, 30313045, doi:10.1175/JCLI-D-12-00401.1.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 32593264, doi:10.1002/grl.50636.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783.

    • Search Google Scholar
    • Export Citation
  • Molekwa, S., C. J. Engelbrecht, and C. J. deW Rautenbach, 2014: Attributes of cut-off low induced rainfall over the Eastern Cape province of South Africa. Theor. Appl. Climatol., 118, 307318, doi:10.1007/s00704-013-1061-3.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., T. Clark, and W. Hall, 1994: Numerical simulations of convective snow clouds over the Sea of Japan; two-dimensional simulations of mixed layer development and convective snow cloud formation. J. Meteor. Soc. Japan, 72, 4362.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, doi:10.1175/2011JHM1358.1.

    • Search Google Scholar
    • Export Citation
  • Nieto, R., and Coauthors, 2005: Climatological features of cutoff low systems in the Northern Hemisphere. J. Climate, 18, 30853103, doi:10.1175/JCLI3386.1.

    • Search Google Scholar
    • Export Citation
  • Nieto, R., and Coauthors, 2007: Analysis of the precipitation and cloudiness associated with COLs occurrence in the Iberian Peninsula. Meteor. Atmos. Phys., 96, 103119, doi:10.1007/s00703-006-0223-6.

    • Search Google Scholar
    • Export Citation
  • Nieto, R., M. Sprenger, H. Wernli, R. Trigo, and L. Gimeno, 2008: Identification and climatology of cut-off lows near the tropopause. Ann. N.Y. Acad. Sci., 1146, 256290, doi:10.1196/annals.1446.016.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. N. Kiladis, K. Weickmann, and D. W. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, doi:10.1175/2010MWR3596.1.

    • Search Google Scholar
    • Export Citation
  • Ramos, A. M., R. M. Trigo, M. L. R. Liberato, and R. Tomé, 2015: Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. J. Hydrometeor., 16, 579597, doi:10.1175/JHM-D-14-0103.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, K., and M. Takahashi, 2005: Cut off and weakening processes of an upper cold low. J. Meteor. Soc. Japan, 83, 817834, doi:10.2151/jmsj.83.817.

    • Search Google Scholar
    • Export Citation
  • Sato, N., K. Sakamoto, and M. Takahashi, 2005: An air mass with high potential vorticity preceding the formation of the Marcus Convergence Zone. Geophys. Res. Lett., 32, L17801, doi:10.1029/2005GL023572.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., J. Yokomori, and K. Yoneyama, 2006: A diagnostic study on interactions between atmospheric thermodynamic structure and cumulus convection over the tropical western Pacific Ocean and over the Indochina peninsula. J. Meteor. Soc. Japan, 84, 151169, doi:10.2151/jmsj.84A.151.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A., 1985: Diagnosis of balanced vortex structure using potential vorticity. J. Atmos. Sci., 42, 397406, doi:10.1175/1520-0469(1985)042<0397:DOBVSU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsuboki, K., 2008: High-resolution simulations of high-impact weather systems using the cloud-resolving model on the earth simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 141–156.

  • Tsuboki, K., and Y. Ogura, 1999: A potential vorticity analysis of thunderstorm-related cold lows. Tenki, 46, 453459.

  • Tsuboki, K., and A. Sakakibara, 2002: Large-scale parallel computing of cloud resolving storm simulator. High Performance Computing, H. P. Zima et al., Eds., Lecture Notes in Computer Science, Vol. 2327, Springer, 243–259.

  • Viale, M., and M. N. Nuñez, 2011: Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeor., 12, 481507, doi:10.1175/2010JHM1284.1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2012: The “year” of tropical convection (May 2008–April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 11891218, doi:10.1175/2011BAMS3095.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 22
PDF Downloads 8 8 8

Roles of an Atmospheric River and a Cutoff Low in the Extreme Precipitation Event in Hiroshima on 19 August 2014

View More View Less
  • 1 National Institute of Polar Research, and Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan
  • | 2 Atmosphere and Ocean Research Institute, University of Tokyo, Tokyo, Japan
  • | 3 Hydrospheric Atmospheric Research Center, Nagoya University, Aichi, Japan
  • | 4 Geosphere Environmental Technology Corporation, Tokyo, Japan
Restricted access

Abstract

Precipitation in excess of 100 mm h−1 in Hiroshima, Japan, on 19 August 2014, caused a flash flood that resulted in 75 deaths and destroyed 330 houses. This study examined the meteorological background of this fatal flood. During this event, considerable filamentary transport of water vapor from the Indochina Peninsula to the Japanese islands occurred, forming a so-called atmospheric river (AR). This AR had a deep structure with an amount of free tropospheric moisture comparable with that of the boundary layer. Furthermore, a cutoff low (COL), detached from the subtropical jet over the central Pacific, moved northwestward to the Japanese islands. Instability associated with the cold core of the COL and dynamical ascent induced in front of it, interacted with the free tropospheric moisture of the AR, which caused the considerable precipitation in Hiroshima. Moreover, the mountains of the Japanese islands played a role in localizing the precipitation in Hiroshima. These roles were separately evaluated on the basis of sensitivity experiments with a cloud-resolving model.

Denotes Open Access content.

Corresponding author address: Nagio Hirota, National Institute of Polar Research, 10-3, Midoricho, Tachikawa, Tokyo 190-8518, Japan. E-mail: nagio@aori.u-tokyo.ac.jp

Abstract

Precipitation in excess of 100 mm h−1 in Hiroshima, Japan, on 19 August 2014, caused a flash flood that resulted in 75 deaths and destroyed 330 houses. This study examined the meteorological background of this fatal flood. During this event, considerable filamentary transport of water vapor from the Indochina Peninsula to the Japanese islands occurred, forming a so-called atmospheric river (AR). This AR had a deep structure with an amount of free tropospheric moisture comparable with that of the boundary layer. Furthermore, a cutoff low (COL), detached from the subtropical jet over the central Pacific, moved northwestward to the Japanese islands. Instability associated with the cold core of the COL and dynamical ascent induced in front of it, interacted with the free tropospheric moisture of the AR, which caused the considerable precipitation in Hiroshima. Moreover, the mountains of the Japanese islands played a role in localizing the precipitation in Hiroshima. These roles were separately evaluated on the basis of sensitivity experiments with a cloud-resolving model.

Denotes Open Access content.

Corresponding author address: Nagio Hirota, National Institute of Polar Research, 10-3, Midoricho, Tachikawa, Tokyo 190-8518, Japan. E-mail: nagio@aori.u-tokyo.ac.jp
Save