Influence of Synoptic Sea-Breeze Fronts on the Urban Heat Island Intensity in Dallas–Fort Worth, Texas

Xiao-Ming Hu Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Xiao-Ming Hu in
Current site
Google Scholar
PubMed
Close
and
Ming Xue Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

When assessed using the difference between urban and rural air temperatures, the urban heat island (UHI) is most prominent during the nighttime. Typically, nocturnal UHI intensity is maintained throughout the night. The UHI intensity over Dallas–Fort Worth (DFW), Texas, however, experienced frequent “collapses” (sudden decreases) around midnight during August 2011, while the region was experiencing an intense heat wave. Observational and modeling studies were conducted to understand this unique phenomenon. Sea-breeze passage was found to be ultimately responsible for the collapses of the nocturnal UHI. Sea-breeze circulation developed along the coast of the Gulf of Mexico during the daytime. During the nighttime, the sea-breeze circulation was advected inland (as far as ~400 km) by the low-level jet-enhanced southerly flow, maintaining the characteristics of sea-breeze fronts, including the enhanced wind shear and vertical mixing. Ahead of the front, surface radiative cooling enhanced the near-surface temperature inversion in rural areas through the night with calm winds. During the frontal passage (around midnight at DFW), the enhanced vertical mixing at the leading edge of the fronts brought warmer air to the surface, leading to rural surface warming events. In contrast, urban effects led to a nearly neutral urban boundary layer. The enhanced mechanical mixing associated with sea-breeze fronts, therefore, did not increase urban surface temperature. The different responses to the sea-breeze frontal passages between rural (warming) and urban areas (no warming) led to the collapse of the UHI. The inland penetration of sea-breeze fronts at such large distances from the coast and their effects on UHI have not been documented in the literature.

Corresponding author address: Dr. Xiao-Ming Hu, Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: xhu@ou.edu

Abstract

When assessed using the difference between urban and rural air temperatures, the urban heat island (UHI) is most prominent during the nighttime. Typically, nocturnal UHI intensity is maintained throughout the night. The UHI intensity over Dallas–Fort Worth (DFW), Texas, however, experienced frequent “collapses” (sudden decreases) around midnight during August 2011, while the region was experiencing an intense heat wave. Observational and modeling studies were conducted to understand this unique phenomenon. Sea-breeze passage was found to be ultimately responsible for the collapses of the nocturnal UHI. Sea-breeze circulation developed along the coast of the Gulf of Mexico during the daytime. During the nighttime, the sea-breeze circulation was advected inland (as far as ~400 km) by the low-level jet-enhanced southerly flow, maintaining the characteristics of sea-breeze fronts, including the enhanced wind shear and vertical mixing. Ahead of the front, surface radiative cooling enhanced the near-surface temperature inversion in rural areas through the night with calm winds. During the frontal passage (around midnight at DFW), the enhanced vertical mixing at the leading edge of the fronts brought warmer air to the surface, leading to rural surface warming events. In contrast, urban effects led to a nearly neutral urban boundary layer. The enhanced mechanical mixing associated with sea-breeze fronts, therefore, did not increase urban surface temperature. The different responses to the sea-breeze frontal passages between rural (warming) and urban areas (no warming) led to the collapse of the UHI. The inland penetration of sea-breeze fronts at such large distances from the coast and their effects on UHI have not been documented in the literature.

Corresponding author address: Dr. Xiao-Ming Hu, Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: xhu@ou.edu
Save
  • Abatan, A. A., B. J. Abiodun, and B. J. Omotosho, 2014: On the characteristics of sea breezes over Nigerian coastal region. Theor. Appl. Climatol., 116, 93102, doi:10.1007/s00704-013-0931-z.

    • Search Google Scholar
    • Export Citation
  • Allen, C. J. T., and R. Washington, 2014: The low-level jet dust emission mechanism in the central Sahara: Observations from Bordj-Badji Mokhtar during the June 2011 Fennec Intensive Observation Period. J. Geophys. Res. Atmos., 119, 29903015, doi:10.1002/2013JD020594.

    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, doi:10.1002/joc.859.

    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 32, 116125, doi:10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944969, doi:10.1175/1520-0493(1995)123<0944:OOTSBF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Coauthors, 1998: Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode. J. Geophys. Res., 103, 22 51922 544, doi:10.1029/98JD01020.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Coauthors, 2005: A bad air day in Houston. Bull. Amer. Meteor. Soc., 86, 657669, doi:10.1175/BAMS-86-5-657.

  • Bao, X. H., and F. Q. Zhang, 2013: Impacts of the mountain-plains solenoid and cold pool dynamics on the diurnal variation of warm-season precipitation over northern China. Atmos. Chem. Phys., 13, 69656982, doi:10.5194/acp-13-6965-2013.

    • Search Google Scholar
    • Export Citation
  • Basara, J. B., P. K. Hall Jr., A. J. Schroeder, B. G. Illston, and K. L. Nemunaitis, 2008: Diurnal cycle of the Oklahoma City urban heat island. J. Geophys. Res., 113, D20109, doi:10.1029/2008JD010311.

    • Search Google Scholar
    • Export Citation
  • Basara, J. B., H. G. Basara, B. G. Illston, and K. C. Crawford, 2010: The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv. Meteor., 2010, 230365, doi:10.1155/2010/230365.

    • Search Google Scholar
    • Export Citation
  • Bohnenstengel, S. I., S. Evans, P. A. Clark, and S. E. Belcher, 2011: Simulations of the London urban heat island. Quart. J. Roy. Meteor. Soc., 137, 16251640, doi:10.1002/qj.855.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta–scale model. Mon. Wea. Rev., 117, 18721890, doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buckley, R. L., and R. J. Kurzeja, 1997: An observational and numerical study of the nocturnal sea breeze. Part I: Structure and circulation. J. Appl. Meteor., 36, 15771598, doi:10.1175/1520-0450(1997)036<1577:AOANSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Camilloni, I., and M. Barrucand, 2012: Temporal variability of the Buenos Aires, Argentina, urban heat island. Theor. Appl. Climatol., 107, 4758, doi:10.1007/s00704-011-0459-z.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. W. Wilson, T. D. Keenan, and J. M. Hacker, 2000: Tropical island convection in the absence of significant topography. Part I: Life cycle of diurnally forced convection. Mon. Wea. Rev., 128, 34593480, doi:10.1175/1520-0493(2000)128<3459:TICITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., K. E. Kunkel, and B. C. Reinke, 1996: Impacts and responses to the 1995 heat wave: A call to action. Bull. Amer. Meteor. Soc., 77, 14971506, doi:10.1175/1520-0477(1996)077<1497:IARTTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2012: Research priorities in observing and modeling urban weather and climate. Bull. Amer. Meteor. Soc., 93, 17251728, doi:10.1175/BAMS-D-11-00217.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., X. C. Yang, and W. P. Zhu, 2014: WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmos. Res., 138, 364377, doi:10.1016/j.atmosres.2013.12.005.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y. Y., and D. W. Byun, 2008: Application of high resolution land use and land cover data for atmospheric modeling in the Houston–Galveston metropolitan area. Part I: Meteorological simulation results. Atmos. Environ., 42, 77957811, doi:10.1016/j.atmosenv.2008.04.055.

    • Search Google Scholar
    • Export Citation
  • Chiba, O., 1993: The turbulent characteristics in the lowest part of the sea-breeze front in the atmospheric surface-layer. Bound.-Layer Meteor., 65, 181195, doi:10.1007/BF00708823.

    • Search Google Scholar
    • Export Citation
  • Childs, P. P., and S. Raman, 2005: Observations and numerical simulations of urban heat island and sea breeze circulations over New York City. Pure Appl. Geophys., 162, 19551980, doi:10.1007/s00024-005-2700-0.

    • Search Google Scholar
    • Export Citation
  • Clappier, A., and Coauthors, 2000: Effect of sea breeze on air pollution in the Greater Athens area. Part I: Numerical simulations and field observations. J. Appl. Meteor., 39, 546562, doi:10.1175/1520-0450(2000)039<0546:EOSBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2010: Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteor., 137, 129, doi:10.1007/s10546-010-9517-9.

    • Search Google Scholar
    • Export Citation
  • Cui, Y. Y., and B. de Foy, 2012: Seasonal variations of the urban heat island at the surface and the near-surface and reductions due to urban vegetation in Mexico City. J. Appl. Meteor. Climatol., 51, 855868, doi:10.1175/JAMC-D-11-0104.1.

    • Search Google Scholar
    • Export Citation
  • Dandou, A., M. Tombrou, and N. Soulakellis, 2009: The influence of the city of Athens on the evolution of the sea-breeze front. Bound.-Layer Meteor., 131, 3551, doi:10.1007/s10546-008-9306-x.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., P. C. Knappenberger, P. J. Michaels, and W. M. Novicoff, 2003: Changing heat-related mortality in the United States. Environ. Health Perspect., 111, 17121718, doi:10.1289/ehp.6336.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., and M. J. Haugland, 2007: A comparison of two cold fronts—Effects of the planetary boundary layer on the mesoscale. Electron. J. Severe Storms Meteor., 2 (4). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewarticle/30/24.]

    • Search Google Scholar
    • Export Citation
  • Dou, J., Y. Wang, R. Bornstein, and S. Miao, 2015: Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J. Appl. Meteor. Climatol., 54, 94105, doi:10.1175/JAMC-D-13-0355.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 36743683, doi:10.1175/JAS-D-14-0060.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • EPA, 2015: Access to monitored air quality data from EPA's Air Quality System (AQS) Data Mart. Accessed 2015. [Available online at https://www.epa.gov/airdata.]

  • Fan, H. L., and D. J. Sailor, 2005: Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: A comparison of implementations in two PBL schemes. Atmos. Environ., 39, 7384, doi:10.1016/j.atmosenv.2004.09.031.

    • Search Google Scholar
    • Export Citation
  • Fan, J. W., and Coauthors, 2015: Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics. J. Geophys. Res. Atmos., 120, 34853509, doi:10.1002/2014JD022142.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., J. C. Torcolini, and R. Redman, 2005: Pseudovertical temperature profiles and the urban heat island measured by a temperature datalogger network in Phoenix, Arizona. J. Appl. Meteor., 44, 313, doi:10.1175/JAM-2176.1.

    • Search Google Scholar
    • Export Citation
  • Finkele, K., J. M. Hacker, H. Kraus, and R. A. D. Byronscott, 1995: A complete sea-breeze circulation cell-derived from aircraft observations. Bound.-Layer Meteor., 73, 299317, doi:10.1007/BF00711261.

    • Search Google Scholar
    • Export Citation
  • Flagg, D. D., and P. A. Taylor, 2011: Sensitivity of mesoscale model urban boundary layer meteorology to the scale of urban representation. Atmos. Chem. Phys., 11, 29512972, doi:10.5194/acp-11-2951-2011.

    • Search Google Scholar
    • Export Citation
  • Freitas, E. D., C. M. Rozoff, W. R. Cotton, and P. L. S. Dias, 2007: Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of Sao Paulo, Brazil. Bound.-Layer Meteor., 122, 4365, doi:10.1007/s10546-006-9091-3.

    • Search Google Scholar
    • Export Citation
  • Gangoiti, G., and Coauthors, 2002: Regional transport of pollutants over the Bay of Biscay: Analysis of an ozone episode under a blocking anticyclone in west-central Europe. Atmos. Environ., 36, 1349–1361, doi:10.1016/S1352-2310(01)00536-2.

  • Garratt, J. R., and W. L. Physick, 1985: The inland boundary-layer at low latitudes. 2. Sea-breeze influences. Bound.-Layer Meteor., 33, 209231, doi:10.1007/BF00052056.

    • Search Google Scholar
    • Export Citation
  • Gaza, R. S., 1998: Mesoscale meteorology and high ozone in the northeast United States. J. Appl. Meteor., 37, 961977, doi:10.1175/1520-0450(1998)037<0961:MMAHOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giannaros, T. M., and D. Melas, 2012: Study of the urban heat island in a coastal Mediterranean City: The case study of Thessaloniki, Greece. Atmos. Res., 118, 103120, doi:10.1016/j.atmosres.2012.06.006.

    • Search Google Scholar
    • Export Citation
  • Giannaros, T. M., D. Melas, I. A. Daglis, I. Keramitsoglou, and K. Kourtidis, 2013: Numerical study of the urban heat island over Athens (Greece) with the WRF model. Atmos. Environ., 73, 103111, doi:10.1016/j.atmosenv.2013.02.055.

    • Search Google Scholar
    • Export Citation
  • Grossman-Clarke, S., J. A. Zehnder, W. L. Stefanov, Y. B. Liu, and M. A. Zoldak, 2005: Urban modifications in a mesoscale meteorological model and the effects on near-surface variables in an arid metropolitan region. J. Appl. Meteor., 44, 12811297, doi:10.1175/JAM2286.1.

    • Search Google Scholar
    • Export Citation
  • Helmis, C. G., D. N. Asimakopoulos, D. G. Deligiorgi, and D. P. Lalas, 1987: Observations of sea-breeze fronts near the shoreline. Bound.-Layer Meteor., 38, 395410, doi:10.1007/BF00120854.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, S. A., 1970: Coastal air-circulation system: Observations and empirical model. Mon. Wea. Rev., 98, 487–509, doi:10.1175/1520-0493(1970)098<0487:CACSOA>2.3.CO;2.

  • Hsu, S. A., 1988: Coastal Meteorology.Academic Press, 260 pp.

  • Hu, X. M., J. W. Nielsen-Gammon, and F. Q. Zhang, 2010: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteor. Climatol., 49, 18311844, doi:10.1175/2010JAMC2432.1.

    • Search Google Scholar
    • Export Citation
  • Hu, X. M., D. C. Doughty, K. J. Sanchez, E. Joseph, and J. D. Fuentes, 2012: Ozone variability in the atmospheric boundary layer in Maryland and its implications for vertical transport model. Atmos. Environ., 46, 354364, doi:10.1016/j.atmosenv.2011.09.054.

    • Search Google Scholar
    • Export Citation
  • Hu, X. M., P. M. Klein, and M. Xue, 2013a: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. Atmos., 118, 10 49010 505, doi:10.1002/jgrd.50823.

    • Search Google Scholar
    • Export Citation
  • Hu, X. M., P. M. Klein, M. Xue, A. Shapiro, and A. Nallapareddy, 2013b: Enhanced vertical mixing associated with a nocturnal cold front passage and its impact on near-surface temperature and ozone concentration. J. Geophys. Res. Atmos., 118, 27142728, doi:10.1002/jgrd.50309.

    • Search Google Scholar
    • Export Citation
  • Hu, X. M., P. M. Klein, M. Xue, J. K. Lundquist, F. Q. Zhang, and Y. C. Qi, 2013c: Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma City. J. Appl. Meteor. Climatol., 52, 17791802, doi:10.1175/JAMC-D-12-0256.1.

    • Search Google Scholar
    • Export Citation
  • Hu, X. M., and Coauthors, 2013d: Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration. Atmos. Environ., 70, 123130, doi:10.1016/j.atmosenv.2012.12.046.

    • Search Google Scholar
    • Export Citation
  • Hu, X. M., and Coauthors, 2014: Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study. Sci. Total Environ., 499, 228237, doi:10.1016/j.scitotenv.2014.08.053.

    • Search Google Scholar
    • Export Citation
  • Ichinose, T., K. Shimodozono, and K. Hanaki, 1999: Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ., 33, 38973909, doi:10.1016/S1352-2310(99)00132-6.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Janjić, Z. I., 1990: The step-mountain coordinate—Physical package. Mon. Wea. Rev., 118, 14291443, doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., and D. A. R. Kristovich, 2012: Observations of urban heat island influence on lake-breeze frontal movement. J. Appl. Meteor. Climatol., 51, 702710, doi:10.1175/JAMC-D-11-0166.1.

    • Search Google Scholar
    • Export Citation
  • Kim, Y., K. Sartelet, J. C. Raut, and P. Chazette, 2013: Evaluation of the Weather Research and Forecast/Urban Model over greater Paris. Bound.-Layer Meteor., 149, 105132, doi:10.1007/s10546-013-9838-6.

    • Search Google Scholar
    • Export Citation
  • Kitada, T., 1987: Turbulence structure of sea breeze front and its implication in air pollution transport—Application of k-ε turbulence model. Bound.-Layer Meteor., 41, 217239, doi:10.1007/BF00120440.

    • Search Google Scholar
    • Export Citation
  • Klein, P., X.-M. Hu, and M. Xue, 2014: Impacts of mixing processes in nocturnal atmospheric boundary layer on urban ozone concentrations. Bound.-Layer Meteor., 150, 107130, doi:10.1007/s10546-013-9864-4.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., F. Q. Zhang, M. L. Kaplan, Y. L. Lin, R. Weglarz, and C. M. Trexler, 2001: Numerical simulations of a gravity wave event over CCOPE. Part III: The role of a mountain-plains solenoid in the generation of the second wave episode. Mon. Wea. Rev., 129, 909933, doi:10.1175/1520-0493(2001)129<0909:NSOAGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kulkarni, P. S., D. Bortoli, and A. M. Silva, 2013: Nocturnal surface ozone enhancement and trend over urban and suburban sites in Portugal. Atmos. Environ., 71, 251259, doi:10.1016/j.atmosenv.2013.01.051.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, doi:10.1023/A:1019207923078.

    • Search Google Scholar
    • Export Citation
  • Lee, T. W., J. Y. Lee, and Z.-H. Wang, 2012: Scaling of the urban heat island intensity using time-dependent energy balance. Urban Climate, 2, 1624, doi:10.1016/j.uclim.2012.10.005.

    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., and V. Masson, 2002: Simulation of a summer urban breeze over Paris. Bound.-Layer Meteor., 104, 463490, doi:10.1023/A:1016509614936.

    • Search Google Scholar
    • Export Citation
  • Lemonsu, A., S. Belair, and J. Mailhot, 2009: The new Canadian urban modelling system: Evaluation for two cases from the Joint Urban 2003 Oklahoma City Experiment. Bound.-Layer Meteor., 133, 4770, doi:10.1007/s10546-009-9414-2.

    • Search Google Scholar
    • Export Citation
  • Li, D., and E. Bou-Zeid, 2013: Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteor. Climatol., 52, 20512064, doi:10.1175/JAMC-D-13-02.1.

    • Search Google Scholar
    • Export Citation
  • Li, M., Z. Mao, Y. Song, M. Liu, and X. Huang, 2015: Impacts of the decadal urbanization on thermally induced circulations in eastern China. J. Appl. Meteor. Climatol., 54, 259–282, doi:10.1175/JAMC-D-14-0176.1.

    • Search Google Scholar
    • Export Citation
  • Li, X.-X., T.-Y. Koh, D. Entekhabi, M. Roth, J. Panda, and L. K. Norford, 2013: A multi-resolution ensemble study of a tropical urban environment and its interactions with the background regional atmosphere. J. Geophys. Res. Atmos., 118, 98049818, doi:10.1002/jgrd.50795.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. B., F. Chen, T. Warner, and J. Basara, 2006: Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 field project. J. Appl. Meteor. Climatol., 45, 912929, doi:10.1175/JAM2383.1.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., and L. E. Olsson, 1973: Detailed mesometeorological studies of air-pollution dispersion in Chicago lake breeze. Mon. Wea. Rev., 101, 387403, doi:10.1175/1520-0493(1973)101<0387:DMSOAP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261304, doi:10.1023/A:1016099921195.

    • Search Google Scholar
    • Export Citation
  • May, P. T., and J. M. Wilczak, 1993: Diurnal and seasonal variations of boundary-layer structure observed with a radar wind profiler and RASS. Mon. Wea. Rev., 121, 673682, doi:10.1175/1520-0493(1993)121<0673:DASVOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Memon, R. A., D. Y. C. Leung, and C. H. Liu, 2009: An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmos. Res., 94, 491500, doi:10.1016/j.atmosres.2009.07.006.

    • Search Google Scholar
    • Export Citation
  • Miao, S. G., F. Chen, M. A. Lemone, M. Tewari, Q. C. Li, and Y. C. Wang, 2009: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48, 484501, doi:10.1175/2008JAMC1909.1.

    • Search Google Scholar
    • Export Citation
  • Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, doi:10.1029/2003RG000124.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Mohan, M., Y. Kikegawa, B. R.