A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh

Stanley G. Benjamin NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Stanley G. Benjamin in
Current site
Google Scholar
PubMed
Close
,
Stephen S. Weygandt NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Stephen S. Weygandt in
Current site
Google Scholar
PubMed
Close
,
John M. Brown NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by John M. Brown in
Current site
Google Scholar
PubMed
Close
,
Ming Hu NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Ming Hu in
Current site
Google Scholar
PubMed
Close
,
Curtis R. Alexander NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Curtis R. Alexander in
Current site
Google Scholar
PubMed
Close
,
Tatiana G. Smirnova NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Tatiana G. Smirnova in
Current site
Google Scholar
PubMed
Close
,
Joseph B. Olson NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Joseph B. Olson in
Current site
Google Scholar
PubMed
Close
,
Eric P. James NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Eric P. James in
Current site
Google Scholar
PubMed
Close
,
David C. Dowell NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by David C. Dowell in
Current site
Google Scholar
PubMed
Close
,
Georg A. Grell NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Georg A. Grell in
Current site
Google Scholar
PubMed
Close
,
Haidao Lin NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Haidao Lin in
Current site
Google Scholar
PubMed
Close
,
Steven E. Peckham NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Steven E. Peckham in
Current site
Google Scholar
PubMed
Close
,
Tracy Lorraine Smith NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Tracy Lorraine Smith in
Current site
Google Scholar
PubMed
Close
,
William R. Moninger NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by William R. Moninger in
Current site
Google Scholar
PubMed
Close
,
Jaymes S. Kenyon NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Jaymes S. Kenyon in
Current site
Google Scholar
PubMed
Close
, and
Geoffrey S. Manikin NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Geoffrey S. Manikin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Rapid Refresh (RAP), an hourly updated assimilation and model forecast system, replaced the Rapid Update Cycle (RUC) as an operational regional analysis and forecast system among the suite of models at the NOAA/National Centers for Environmental Prediction (NCEP) in 2012. The need for an effective hourly updated assimilation and modeling system for the United States for situational awareness and related decision-making has continued to increase for various applications including aviation (and transportation in general), severe weather, and energy. The RAP is distinct from the previous RUC in three primary aspects: a larger geographical domain (covering North America), use of the community-based Advanced Research version of the Weather Research and Forecasting (WRF) Model (ARW) replacing the RUC forecast model, and use of the Gridpoint Statistical Interpolation analysis system (GSI) instead of the RUC three-dimensional variational data assimilation (3DVar). As part of the RAP development, modifications have been made to the community ARW model (especially in model physics) and GSI assimilation systems, some based on previous model and assimilation design innovations developed initially with the RUC. Upper-air comparison is included for forecast verification against both rawinsondes and aircraft reports, the latter allowing hourly verification. In general, the RAP produces superior forecasts to those from the RUC, and its skill has continued to increase from 2012 up to RAP version 3 as of 2015. In addition, the RAP can improve on persistence forecasts for the 1–3-h forecast range for surface, upper-air, and ceiling forecasts.

Additional affiliation: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado.

Additional affiliation: Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado.

Corresponding author address: Stanley G. Benjamin, NOAA/ESRL, R/GSD1, 325 Broadway, Boulder, CO 80305-3328. E-mail: stan.benjamin@noaa.gov

Abstract

The Rapid Refresh (RAP), an hourly updated assimilation and model forecast system, replaced the Rapid Update Cycle (RUC) as an operational regional analysis and forecast system among the suite of models at the NOAA/National Centers for Environmental Prediction (NCEP) in 2012. The need for an effective hourly updated assimilation and modeling system for the United States for situational awareness and related decision-making has continued to increase for various applications including aviation (and transportation in general), severe weather, and energy. The RAP is distinct from the previous RUC in three primary aspects: a larger geographical domain (covering North America), use of the community-based Advanced Research version of the Weather Research and Forecasting (WRF) Model (ARW) replacing the RUC forecast model, and use of the Gridpoint Statistical Interpolation analysis system (GSI) instead of the RUC three-dimensional variational data assimilation (3DVar). As part of the RAP development, modifications have been made to the community ARW model (especially in model physics) and GSI assimilation systems, some based on previous model and assimilation design innovations developed initially with the RUC. Upper-air comparison is included for forecast verification against both rawinsondes and aircraft reports, the latter allowing hourly verification. In general, the RAP produces superior forecasts to those from the RUC, and its skill has continued to increase from 2012 up to RAP version 3 as of 2015. In addition, the RAP can improve on persistence forecasts for the 1–3-h forecast range for surface, upper-air, and ceiling forecasts.

Additional affiliation: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado.

Additional affiliation: Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado.

Corresponding author address: Stanley G. Benjamin, NOAA/ESRL, R/GSD1, 325 Broadway, Boulder, CO 80305-3328. E-mail: stan.benjamin@noaa.gov
Save
  • Anthes, R. A., and D. P. Baumhefner, 1984: A diagram depicting forecast skill and predictability. Bull. Amer. Meteor. Soc., 65, 701703.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004a: An hourly assimilation/forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, S. S. Weygandt, T. L. Smith, B. Schwartz, and W. R. Moninger, 2004b: Assimilation of surface cloud, visibility, and current weather observations in the RUC. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., P1.47. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_71242.htm.]

  • Benjamin, S. G., G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Bleck, 2004c: Mesoscale weather prediction with the RUC hybrid isentropic/terrain-following coordinate model. Mon. Wea. Rev., 132, 473494, doi:10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., S. S. Weygandt, D. Dévényi, J. M. Brown, G. A. Manikin, T. L. Smith, and T. G. Smirnova, 2004d: Improved moisture and PBL initialization in the RUC using METAR data. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 17.3. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_82023.htm.]

  • Benjamin, S. G., S. S. Weygandt, S. E. Koch, and J. M. Brown, 2006: Assimilation of lightning data into RUC model forecasting. Second Conf. on Meteorological Applications of Lightning Data, Atlanta, GA, Amer. Meteor. Soc., 4.3. [Available online at https://ams.confex.com/ams/Annual2006/techprogram/paper_105079.htm.]

  • Benjamin, S. G., B. D. Jamison, W. R. Moninger, S. R. Sahm, B. E. Schwartz, and T. W. Schlatter, 2010: Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle. Mon. Wea. Rev., 138, 13191343, doi:10.1175/2009MWR3097.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, and T. G. Smirnova, 2016: Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud-precipitation microphysics parameterization. Wea. Forecasting, doi:10.1175/WAF-D-15-0136.1, in press.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., Y. Cheng, A. M. Howard, and I. N. Easu, 2008: Stably stratified flows: A model with no Ri(cr). J. Atmos. Sci., 65, 24372447, doi:10.1175/2007JAS2470.1.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32, doi:10.1175/0065-9401-21.43.29.

  • Fitch, A. C., J. K. Lundquist, and J. B. Olson, 2013: Mesoscale influences of wind farms throughout a diurnal cycle. Mon. Wea. Rev., 141, 21732198, doi:10.1175/MWR-D-12-00185.1.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., S. Sukoriansky, and P. S. Anderson, 2007: On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett., 8, 6569, doi:10.1002/asl.153.

    • Search Google Scholar
    • Export Citation
  • Gambo, K., 1978: Notes on the turbulence closure model for atmospheric boundary layers. J. Meteor. Soc. Japan, 56, 466480.

  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Ghirardelli, J. E., and B. Glahn, 2010: The Meteorological Development Laboratory’s aviation weather prediction system. Wea. Forecasting, 25, 10271051, doi:10.1175/2010WAF2222312.1.

    • Search Google Scholar
    • Export Citation
  • Ghirardelli, J. E., J. P. Charba, J.-S. Im, F. G. Samplatsky, B. Glahn, R. Yang, and A. J. Kochenash, 2015: Improving Localized Aviation MOS Program (LAMP) guidance by utilizing emerging forecast and observation resources. Special Symp. on Model Post-Processing and Downscaling, Phoenix, AZ, Amer. Meteor. Soc., 3.2. [Available online at http://www.nws.noaa.gov/mdl/lamp/publications/AMS_glmp_newdatasets_ghirardelli_etal_2015_final.pdf.]

  • Glahn, B., A. D. Schnapp, and J.-S. Im, 2015: The LAMP and HRRR ceiling height and visibility meld. NOAA/NWS MDL Office Note 15-1, 28 pp. [http://www.nws.noaa.gov/mdl/lamp/publications/lamp_hrrr_office_note_ON_15-1_7_31_15_final.pdf.]

  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 2002, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, doi:10.5194/acp-14-5233-2014.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry in the WRF model. Atmos. Environ., 39, 69576976, doi:10.1016/j.atmosenv.2005.04.027.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, doi:10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jacobs, A. J. M., and N. Maat, 2005: Persistence forecasting reference for aviation forecasts: Numerical guidance methods for decision support in aviation meteorological forecasting. Wea. Forecasting, 20, 82100, doi:10.1175/WAF-827.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada Level 2.5 scheme in the NCEP meso model. National Centers for Environmental Prediction Office Note 437, 61 pp.

  • Janjić, Z. I., and R. L. Gall, 2012: Scientific documentation of the NCEP nonhydrostatic multiscale model on the B grid (NMMB). Part 1 dynamics. NCAR Tech. Note NCAR/TN-489+STR, 75 pp., doi:10.5065/D6WH2MZX.

  • Jeannot, E., 2000: Situation awareness—Synthesis of literature search. Eurocontrol Experimental Centre Note 16/00, 45 pp. [Available online at http://www.eurocontrol.int/eec/gallery/content/public/document/eec/report/2000/031_Situation_Awareness_Literature_Search.pdf.]

  • Kitamura, Y., 2010: Modifications to the Mellor-Yamada-Nakanishi-Niino (MYNN) model for the stable stratification case. J. Meteor. Soc. Japan, 88, 857864, doi:10.2151/jmsj.2010-506.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 16911705, doi:10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 39874004, doi:10.1175/2008MWR2596.1.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 10521068, doi:10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lemone, M. A., M. Tewari, F. Chen, and J. Dudhia, 2013: Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations. Mon. Wea. Rev., 141, 3054, doi:10.1175/MWR-D-12-00106.1.

    • Search Google Scholar
    • Export Citation
  • Lemone, M. A., M. Tewari, F. Chen, and J. Dudhia, 2014: Objectively determined fair-weather NBL features in ARW-WRF and their comparison to CASES-97 observations. Mon. Wea. Rev., 142, 27092732, doi:10.1175/MWR-D-13-00358.1.

    • Search Google Scholar
    • Export Citation
  • Mass, C., 2012: Nowcasting: The promise of new technologies of communication, modeling, and observations. Bull. Amer. Meteor. Soc., 93, 797809, doi:10.1175/BAMS-D-11-00153.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., 2008: The potential impact of using persistence as a reference forecast on perceived forecast skill. Wea. Forecasting, 23, 10221031, doi:10.1175/2008WAF2007037.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., 2001: Improvement of Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, doi:10.1023/A:1018915827400.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, doi:10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • NCEP, 2003: The GFS atmospheric model. NCEP Office Note 442, 14 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on442.pdf.]

  • Nielsen-Gammon, J. W., and Coauthors, 2008: Multisensor estimation of mixing heights over a coastal city. J. Appl. Meteor. Climatol., 47, 2743, doi:10.1175/2007JAMC1503.1.

    • Search Google Scholar
    • Export Citation
  • Peckham, S. E., T. G. Smirnova, S. G. Benjamin, J. M. Brown, and J. S. Kenyon, 2016: Implementation of a digital filter initialization in the WRF Model and Its application in the Rapid Refresh. Mon. Wea. Rev., 144, 99106, doi:10.1175/MWR-D-15-0219.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1957: A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14, 184185, doi:10.1175/1520-0469(1957)014<0184:ACSHSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Slingo, J. M., 1980: A cloud parameterization scheme derived from GATE data for use with a numerical model. Quart. J. Roy. Meteor. Soc., 106, 747770, doi:10.1002/qj.49710645008.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Evolution of soil moisture and temperature in the MAPS/RUC assimilation cycle. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 172–175.

  • Smirnova, T. G., S. G. Benjamin, J. M. Brown, B. Schwartz, and D. Kim, 2000: Validation of long-term precipitation and evolved soil moisture and temperature fields in MAPS. 15th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 1.15. [Available online at https://ams.confex.com/ams/annual2000/techprogram/paper_6846.htm.]

  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, and J. S. Kenyon, 2016: Modifications to the Rapid Update Cycle Land Surface Model (RUC LSM) available in the Weather Research and Forecasting (WRF) Model. Mon. Wea. Rev., doi:10.1175/MWR-D-15-0198.1, in press.

  • Smith, T. L., S. G. Benjamin, S. I. Gutman, and S. Sahm, 2007: Short-range forecast impact from assimilation of GPS-IPW observations into the Rapid Update Cycle. Mon. Wea. Rev., 135, 29142930, doi:10.1175/MWR3436.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. L., S. G. Benjamin, J. M. Brown, S. Weygandt, T. Smirnova, and B. Schwartz, 2008: Convection forecasts from the hourly updated, 3-km High Resolution Rapid Refresh (HRRR) model. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 11.1. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142055.htm.]

  • Sommeria, G., and J. W. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34, 344355, doi:10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, doi:10.1175/JAS-D-13-0305.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., 2010: Incorporating ensemble covariance in the gridpoint statistical interpolation variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 29902995, doi:10.1175/2010MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., and S. Benjamin, 2007: Radar reflectivity-based initialization of precipitation systems using a diabatic digital filter within the Rapid Update Cycle. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 1B.7. [Available online at https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124540.htm.]

  • Weygandt, S. S., S. Benjamin, T. G. Smirnova, and J. M. Brown, 2008: Assimilation of radar reflectivity data using a diabatic digital filter within the Rapid Update Cycle. 12th Conf. on IOAS-AOLS, New Orleans, LA, Amer. Meteor. Soc., 8.4. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_134081.htm.]

  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 46348, doi:10.1175/2007MWR2018.1.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J., and Coauthors, 2015: The Wind Forecast Improvement Project (WFIP): A public–private partnership addressing wind energy forecast needs. Bull. Amer. Meteor. Soc., 96, 1699–1718, doi:10.1175/BAMS-D-14-00107.1.

  • WMO, 2015: USA AMDAR Programme—Smoothed monthly average of daily (aircraft) report totals. [Available online at http://www.wmo.int/pages/prog/www/GOS/ABO/data/statistics/aircraft_obs_cmc_mthly_ave_daily_reports_USA.jpg.]

  • Wu, W.-S., 2005: Background error for NCEP’s GSI analysis in regional mode. Proc. Fourth Int. Symp. on Assimilation of Observations in Meteorology and Oceanography, Prague, Czech Republic, WMO, 3A.27.

  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, doi:10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. A. Klein, 2013: Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: Investigation of diurnal-cycle observations collected at the ARM Southern Great Plains site. J. Atmos. Sci., 70, 12971315, doi:10.1175/JAS-D-12-0131.1.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, and I. Rogachevskii, 2007: Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes. Bound.-Layer Meteor., 125, 167191, doi:10.1007/s10546-007-9189-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22672 9200 2533
PDF Downloads 9825 1861 166