Understanding the Role of Atmospheric Rivers in Heavy Precipitation in the Southeast United States

Kelly Mahoney * NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Kelly Mahoney in
Current site
Google Scholar
PubMed
Close
,
Darren L. Jackson +Cooperative Institute for Research in the Environmental Sciences, University of Colorado at Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Darren L. Jackson in
Current site
Google Scholar
PubMed
Close
,
Paul Neiman * NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Paul Neiman in
Current site
Google Scholar
PubMed
Close
,
Mimi R. Abel +Cooperative Institute for Research in the Environmental Sciences, University of Colorado at Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Mimi R. Abel in
Current site
Google Scholar
PubMed
Close
,
Lisa Darby * NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Lisa Darby in
Current site
Google Scholar
PubMed
Close
,
Gary Wick * NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Gary Wick in
Current site
Google Scholar
PubMed
Close
,
Allen White * NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Allen White in
Current site
Google Scholar
PubMed
Close
,
Ellen Sukovich +Cooperative Institute for Research in the Environmental Sciences, University of Colorado at Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Ellen Sukovich in
Current site
Google Scholar
PubMed
Close
, and
Rob Cifelli * NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Rob Cifelli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An analysis of atmospheric rivers (ARs) as defined by an automated AR detection tool based on integrated water vapor transport (IVT) and the connection to heavy precipitation in the southeast United States (SEUS) is performed. Climatological water vapor and water vapor transport fields are compared between the U.S. West Coast (WCUS) and the SEUS, highlighting stronger seasonal variation in integrated water vapor in the SEUS and stronger seasonal variation in IVT in the WCUS. The climatological analysis suggests that IVT values above ~500 kg m−1 s−1 (as incorporated into an objective identification tool such as the AR detection tool used here) may serve as a sensible threshold for defining ARs in the SEUS.

Atmospheric river impacts on heavy precipitation in the SEUS are shown to vary on an annual cycle, and a connection between ARs and heavy precipitation during the nonsummer months is demonstrated. When identified ARs are matched to heavy precipitation days (>100 mm day−1), an average match rate of ~41% is found.

Results suggest that some aspects of an AR identification framework in the SEUS may offer benefit in forecasting heavy precipitation, particularly at medium- to longer-range forecast lead times. However, the relatively high frequency of SEUS heavy precipitation cases in which an AR is not identified necessitates additional careful consideration and incorporation of other critical aspects of heavy precipitation environments such that significant predictive skill might eventually result.

Corresponding author address: Kelly M. Mahoney, NOAA/Earth System Research Laboratory/Physical Sciences Division, Mail Code R/PSD2, 325 Broadway, Boulder, CO 80305. E-mail: kelly.mahoney@noaa.gov

Abstract

An analysis of atmospheric rivers (ARs) as defined by an automated AR detection tool based on integrated water vapor transport (IVT) and the connection to heavy precipitation in the southeast United States (SEUS) is performed. Climatological water vapor and water vapor transport fields are compared between the U.S. West Coast (WCUS) and the SEUS, highlighting stronger seasonal variation in integrated water vapor in the SEUS and stronger seasonal variation in IVT in the WCUS. The climatological analysis suggests that IVT values above ~500 kg m−1 s−1 (as incorporated into an objective identification tool such as the AR detection tool used here) may serve as a sensible threshold for defining ARs in the SEUS.

Atmospheric river impacts on heavy precipitation in the SEUS are shown to vary on an annual cycle, and a connection between ARs and heavy precipitation during the nonsummer months is demonstrated. When identified ARs are matched to heavy precipitation days (>100 mm day−1), an average match rate of ~41% is found.

Results suggest that some aspects of an AR identification framework in the SEUS may offer benefit in forecasting heavy precipitation, particularly at medium- to longer-range forecast lead times. However, the relatively high frequency of SEUS heavy precipitation cases in which an AR is not identified necessitates additional careful consideration and incorporation of other critical aspects of heavy precipitation environments such that significant predictive skill might eventually result.

Corresponding author address: Kelly M. Mahoney, NOAA/Earth System Research Laboratory/Physical Sciences Division, Mail Code R/PSD2, 325 Broadway, Boulder, CO 80305. E-mail: kelly.mahoney@noaa.gov
Save
  • Alexander, M. A., J. D. Scott, D. Swales, M. R. Abel, K. Mahoney, and C. A. Smith, 2015: Moisture pathways into the U.S. Intermountain West associated with heavy winter precipitation events. J. Hydrometeor., 16, 11841206, doi:10.1175/JHM-D-14-0139.1.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and D. J. Stensrud, 2000: Climatology of heavy rain events in the United States from hourly precipitation observations. Mon. Wea. Rev., 128, 11941201, doi:10.1175/1520-0493(2000)128<1194:COHREI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brun, J., and A. P. Barros, 2014: Mapping the role of tropical cyclones on the hydroclimate of the southeast United States: 2002–2011. Int. J. Climatol., 34, 494517, doi:10.1002/joc.3703.

    • Search Google Scholar
    • Export Citation
  • Businger, S., D. I. Knapp, and G. F. Watson, 1990: Storm following climatology of precipitation associated with winter cyclones originating over the Gulf of Mexico. Wea. Forecasting, 5, 378403, doi:10.1175/1520-0434(1990)005<0378:SFCOPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., F. M. Ralph, and B. J. Moore, 2013: The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Wea. Rev., 141, 42344255, doi:10.1175/MWR-D-13-00019.1.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. Cayan, 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17, 218237, doi:10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 32723297, doi:10.1175/2010MWR3243.1.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., R. Nieto, M. Vázquez, and D. A. Lavers, 2014: Atmospheric rivers: A mini-review. Front. Earth Sci., 2, doi:10.3389/feart.2014.00002.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, doi:10.1175/BAMS-D-12-00014.1.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., J. D. Locatelli, and J. E. Martin, 1996: A new conceptual model for cyclones generated in the lee of the Rocky Mountains. Bull. Amer. Meteor. Soc., 77, 11691178, doi:10.1175/1520-0477(1996)077<1169:ANCMFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., D. Lüthi, and C. Schär, 2006: Predictability mysteries in cloud-resolving models. Mon. Wea. Rev., 134, 20952107, doi:10.1175/MWR3176.1.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., and W. A. Gallus Jr., 2004: MCS rainfall forecast accuracy as a function of large-scale forcing. Wea. Forecasting, 19, 428439, doi:10.1175/1520-0434(2004)019<0428:MRFAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keim, B. D., 1996: Spatial, synoptic, and seasonal patterns of heavy rainfall in the southeastern United States. Phys. Geogr., 17, 313328.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and J. E. Martin, 2007: A Pacific moisture conveyor belt and its relationship to a significant precipitation event in the semiarid southwestern United States. Wea. Forecasting, 22, 125144, doi:10.1175/WAF963.1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, doi:10.1175/2009JCLI3333.1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., H. Wernli, and G. Gläser, 2013: A global climatology of tropical moisture exports. J. Climate, 26, 30313045, doi:10.1175/JCLI-D-12-00401.1.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and C. A. Ray, 1997: Mesoanalysis of summertime convergence zones in central and eastern North Carolina. Wea. Forecasting, 12, 5677, doi:10.1175/1520-0434(1997)012<0056:MOSCZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, 1997: Synoptic-scale features associated with warm season heavy rainfall over the interior southeastern United States. Wea. Forecasting, 12, 557571, doi:10.1175/1520-0434(1997)012<0557:SSFAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, 2001: The most extreme precipitation events over the eastern United States from 1950 to 1996: Considerations of scale. J. Hydrometeor., 2, 309325, doi:10.1175/1525-7541(2001)002<0309:TMEPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2013: The south-central U.S. flood of May 2010: Present and future. J. Climate, 26, 46884709, doi:10.1175/JCLI-D-12-00392.1.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2013: Atmospheric rivers and flooding over the central United States. J. Climate, 26, 78297836, doi:10.1175/JCLI-D-13-00212.1.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and G. Villarini, 2015: The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol., 522, 382390, doi:10.1016/j.jhydrol.2014.12.010.

    • Search Google Scholar
    • Export Citation
  • Letkewicz, C. E., and M. D. Parker, 2010: Forecasting the maintenance of mesoscale convective systems crossing the Appalachian Mountains. Wea. Forecasting, 25, 11791195, doi:10.1175/2010WAF2222379.1.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., E. A. Rosenberg, C. Lin, B. Nijssen, V. Mishra, K. M. Andreadis, E. P. Maurer, and D. P. Lettenmaier, 2013: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Climate, 26, 93849392, doi:10.1175/JCLI-D-12-00508.1.

    • Search Google Scholar
    • Export Citation
  • Mahoney, K. M., and G. M. Lackmann, 2007: The effects of upstream convection on downstream precipitation. Wea. Forecasting, 22, 255277, doi:10.1175/WAF986.1.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378, doi:10.1175/MWR-D-11-00126.1.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., L. F. Bosart, D. Keyser, and M. L. Jurewicz, 2013: Synoptic-scale environments of predecessor rain events occurring east of the Rocky Mountains in association with Atlantic basin tropical cyclones. Mon. Wea. Rev., 141, 10221047, doi:10.1175/MWR-D-12-00178.1.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., K. M. Mahoney, E. M. Sukovich, R. Cifelli, and T. M. Hamill, 2015: Climatology and environmental characteristics of extreme precipitation events in the southeastern United States. Mon. Wea. Rev., 143, 718741, doi:10.1175/MWR-D-14-00065.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger, 2008: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247, doi:10.1175/2007JHM855.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, B. J. Moore, M. R. Abel, K. M. Mahoney, J. M. Cordeira, and M. D. Dettinger, 2013: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor., 14, 460484, doi:10.1175/JHM-D-12-0101.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., G. A. Wick, B. J. Moore, F. M. Ralph, J. R. Spackman, and B. Ward, 2014: An airborne study of an atmospheric river over the subtropical Pacific during WISPAR: Dropsonde budget-box diagnostics, and precipitation impacts in Hawaii. Mon. Wea. Rev., 142, 31993223, doi:10.1175/MWR-D-13-00383.1.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404, doi:10.1029/92GL02916.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 2740, doi:10.1175/JCLI-D-13-00223.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, doi:10.1175/BAMS-D-11-00188.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. N. Kiladis, K. Weickmann, and D. M. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, doi:10.1175/2010MWR3596.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, doi:10.1175/MWR-D-13-00168.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2015: The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis. Mon. Wea. Rev., 143, 19241944, doi:10.1175/MWR-D-14-00288.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, doi:10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, doi:10.1175/WAF900.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and C. A. Davis, 2010: Ensemble-based forecast uncertainty analysis of diverse heavy rainfall events. Wea. Forecasting, 25, 11031122, doi:10.1175/2010WAF2222378.1.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., A. Grundstein, and T. L. Mote, 2007: Quantifying the contribution of tropical cyclones to extreme rainfall along the coastal southeastern United States. Geophys. Res. Lett., 34, L23810, doi:10.1029/2007GL031694.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A. S., M. L. Baeck, A. A. Ntelekos, G. Villarini, and M. Steiner, 2011: Extreme rainfall and flooding from orographic thunderstorms in the central Appalachians. Water Resour. Res., 47, W04514, doi:10.1029/2010WR010190.

    • Search Google Scholar
    • Export Citation
  • Srock, A. F., and L. F. Bosart, 2009: Heavy precipitation associated with southern Appalachian cold-air damming and Carolina coastal frontogenesis in advance of weak landfalling Tropical Storm Marco (1990). Mon. Wea. Rev., 137, 24482470, doi:10.1175/2009MWR2819.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and J. M. Fritsch, 1994: Mesoscale convective systems in weakly forced large-scale environments. Part III: Numerical simulations and implications for operational forecasting. Mon. Wea. Rev., 122, 20842104, doi:10.1175/1520-0493(1994)122<2084:MCSIWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wick, G. A., 2014: Implementation and initial application of an atmospheric river detection tool based on integrated vapor transport. 2014 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A34E-06.

  • Wick, G. A., P. J. Neiman, and F. M. Ralph, 2013a: Description and validation of an automated objective technique for identification and characterization of the integrated water vapor signature of atmospheric rivers. IEEE Trans. Geosci. Remote Sens., 51, 21662176, doi:10.1109/TGRS.2012.2211024.

    • Search Google Scholar
    • Export Citation
  • Wick, G. A., P. J. Neiman, F. M. Ralph, and T. M. Hamill, 2013b: Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models. Wea. Forecasting, 28, 13371352, doi:10.1175/WAF-D-13-00025.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2167 518 50
PDF Downloads 1489 278 36