• Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boyle, J. S., S. A. Klein, D. D. Lucas, H.-Y. Ma, J. Tannahill, and S. Xie, 2015: The parametric sensitivity of CAM5’s MJO. J. Geophys. Res. Atmos., 120, 14241444, doi:10.1002/2014JD022507.

    • Search Google Scholar
    • Export Citation
  • Braham, R. R., 1968: Meteorological bases for precipitation development. Bull. Amer. Meteor. Soc., 49, 343353.

  • Chun, H.-Y., and J.-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 32993310, doi:10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 23132335, doi:10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and M. Živković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 17661782, doi:10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: The Physics of Rain Clouds. Cambridge University Press, 390 pp.

  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ham, S., S.-Y. Hong, Y.-H. Byun, and J. Kim, 2009: Effects of precipitation physics algorithms on a simulated climate in a general circulation model. J. Atmos. Sol.-Terr. Phys., 71, 19241934, doi:10.1016/j.jastp.2009.08.001.

    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, doi:10.1175/WAF-D-10-05038.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 14811496, doi:10.1002/qj.665.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1998: Convective trigger function for a mass flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 25992620, doi:10.1175/1520-0493(1998)126<2599:CTFFAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model. Wea. Mon. Rev., 126, 26212639, doi:10.1175/1520-0493(1998)126<2621:IOPCSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Jang, H. H. Shin, and J. Lee, 2012: An explicitly-coupled shallow convection parameterization with planetary boundary processes. Preprints, 12th WRF Workshop, Boulder, CO, NCAR, P50. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2012/abstracts/p50.htm.]

  • Hong, S.-Y., and Coauthors, 2013: The Global/Regional Integrated Model System (GRIMs). Asia-Pac. J. Atmos. Sci., 49, 219243, doi:10.1007/s13143-013-0023-0.

    • Search Google Scholar
    • Export Citation
  • Iacono, M.-J., J. S. Delamere, E. J. Mlawer, M. W. Shepherd, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculation with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Kim, E.-J., and S.-Y. Hong, 2010: Impact of air-sea interaction on East Asian summer monsoon climate in WRF. J. Geophys. Res., 115, D19118, doi:10.1029/2009JD013253.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 18751902, doi:10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., 2011: Investigation of aerosol indirect effects on simulated moist convections. Ph.D. dissertation, Yonsei University, Seoul, South Korea, 186 pp.

  • Lim, K.-S. S., and S.-Y. Hong, 2012: Investigation of aerosol indirect effects on simulated flash-flood heavy rainfall over Korea. Meteor. Atmos. Phys., 118, 199214, doi:10.1007/s00703-012-0216-6.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., S.-Y. Hong, J.-H. Yoon, and J. Han, 2014: Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolutions. Wea. Forecasting, 29, 11431154, doi:10.1175/WAF-D-13-00143.1.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., 1978: Development and observational verification of a cumulus cloud parameterization. Ph.D. dissertation, University of California, Los Angeles, Los Angeles, CA, 359 pp.

  • Nober, F. J., H.-F. Graf, and D. Rosenfeld, 2003: Sensitivity of the global circulation to the suppression of precipitation by anthropogenic aerosols. Global Planet. Change, 37, 5780, doi:10.1016/S0921-8181(02)00191-1.

    • Search Google Scholar
    • Export Citation
  • Pan, H. L., and W.-S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC Medium-Range Forecast Model. NMC Office Note 409, 40 pp.

  • Park, H., and S.-Y. Hong, 2007: An evaluation of a mass-flux cumulus parameterization scheme in the KMA global forecast system. J. Meteor. Soc. Japan, 85, 151169, doi:10.2151/jmsj.85.151.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1988: A Short Course in Cloud Physics. 3rd ed. Pergamon Press, 293 pp.

  • Segele, Z. T., L. M. Leslie, and P. J. Lamb, 2009: Evaluation and adaption of a regional climate model for the Horn of Africa: Rainfall climatology and interannual variability. Int. J. Climatol., 29, 4765, doi:10.1002/joc.1681.

    • Search Google Scholar
    • Export Citation
  • Song, X., G. J. Zhang, and J.-L. F. Li, 2012: Evaluation of microphysics parameterization for convective clouds in the NCAR Community Atmosphere Model CAM5. J. Climate, 25, 85688590, doi:10.1175/JCLI-D-11-00563.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, B., and Coauthors, 2013: Uncertainty quantification and parameter tuning in the CAM5 Zhang–McFarlane convection scheme and impact of improved convection on the global circulation and climate. J. Geophys. Res. Atmos., 118, 395415, doi:10.1029/2012JD018213.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 727 361 168
PDF Downloads 515 170 18

Sensitivity of a Cumulus Parameterization Scheme to Precipitation Production Representation and Its Impact on a Heavy Rain Event over Korea

Ji-Young HanKorea Institute of Atmospheric Prediction Systems, Seoul, South Korea

Search for other papers by Ji-Young Han in
Current site
Google Scholar
PubMed
Close
,
Song-You HongKorea Institute of Atmospheric Prediction Systems, Seoul, South Korea

Search for other papers by Song-You Hong in
Current site
Google Scholar
PubMed
Close
,
Kyo-Sun Sunny LimPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Kyo-Sun Sunny Lim in
Current site
Google Scholar
PubMed
Close
, and
Jongil HanSystems Research Group, Inc. and National Centers for Environmental Prediction/Environmental Modeling Center, Camp Springs, Maryland

Search for other papers by Jongil Han in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The sensitivity of a cumulus parameterization scheme (CPS) to a representation of precipitation production is examined. To do this, the parameter that determines the fraction of cloud condensate converted to precipitation in the simplified Arakawa–Schubert (SAS) convection scheme is modified following the results from a cloud-resolving simulation. While the original conversion parameter is assumed to be constant, the revised parameter includes a temperature dependency above the freezing level, which leads to less production of frozen precipitating condensate with height. The revised CPS has been evaluated for a heavy rainfall event over Korea as well as medium-range forecasts using the Global/Regional Integrated Model system (GRIMs). The inefficient conversion of cloud condensate to convective precipitation at colder temperatures generally leads to a decrease in precipitation, especially in the category of heavy rainfall. The resultant increase of detrained moisture induces moistening and cooling at the top of clouds. A statistical evaluation of the medium-range forecasts with the revised precipitation conversion parameter shows an overall improvement of the forecast skill in precipitation and large-scale fields, indicating importance of more realistic representation of microphysical processes in CPSs.

Corresponding author address: Ji-Young Han, Korea Institute of Atmospheric Prediction Systems, 4F, Hankuk Computer Building, 35 Boramae-Ro 5 Gil, Dongjak-Gu, Seoul 07071, South Korea. E-mail: jy.han@kiaps.org

Abstract

The sensitivity of a cumulus parameterization scheme (CPS) to a representation of precipitation production is examined. To do this, the parameter that determines the fraction of cloud condensate converted to precipitation in the simplified Arakawa–Schubert (SAS) convection scheme is modified following the results from a cloud-resolving simulation. While the original conversion parameter is assumed to be constant, the revised parameter includes a temperature dependency above the freezing level, which leads to less production of frozen precipitating condensate with height. The revised CPS has been evaluated for a heavy rainfall event over Korea as well as medium-range forecasts using the Global/Regional Integrated Model system (GRIMs). The inefficient conversion of cloud condensate to convective precipitation at colder temperatures generally leads to a decrease in precipitation, especially in the category of heavy rainfall. The resultant increase of detrained moisture induces moistening and cooling at the top of clouds. A statistical evaluation of the medium-range forecasts with the revised precipitation conversion parameter shows an overall improvement of the forecast skill in precipitation and large-scale fields, indicating importance of more realistic representation of microphysical processes in CPSs.

Corresponding author address: Ji-Young Han, Korea Institute of Atmospheric Prediction Systems, 4F, Hankuk Computer Building, 35 Boramae-Ro 5 Gil, Dongjak-Gu, Seoul 07071, South Korea. E-mail: jy.han@kiaps.org
Save