• Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Schubert, and A. S. Frisch, 1995: The Atlantic Statocumulus Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904, doi:10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., 1993: Variability in concentrations of cloud condensation nuclei in the marine cloud-topped boundary layer. Tellus, 45B, 458472, doi:10.1034/j.1600-0889.45.issue5.1.x.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Boutle, I., and S. Abel, 2012: Microphysical controls on the stratocumulus topped boundary-layer structure during VOCALS-REx. Atmos. Chem. Phys., 12, 28492863, doi:10.5194/acp-12-2849-2012.

    • Search Google Scholar
    • Export Citation
  • Boutle, I., S. Abel, P. Hill, and C. Morcrette, 2014a: Spatial variability of liquid cloud and rain: Observations and microphysical effects. Quart. J. Roy. Meteor. Soc., 140, 583594, doi:10.1002/qj.2140.

    • Search Google Scholar
    • Export Citation
  • Boutle, I., J. Eyre, and A. Lock, 2014b: Seamless stratocumulus simulation across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, doi:10.1175/MWR-D-13-00229.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., R. Wood, R. C. George, D. Leon, G. Allen, and X. Zheng, 2010: Southeast Pacific stratocumulus clouds, precipitation, and boundary layer structure sampled along 20°S during VOCALS-REx. Atmos. Chem. Phys., 10, 10 63910 654, doi:10.5194/acp-10-10639-2010.

    • Search Google Scholar
    • Export Citation
  • Burk, S. D., and W. T. Thompson, 1989: A vertically nested regional numerical weather prediction model with second-order closure physics. Mon. Wea. Rev., 117, 23052324, doi:10.1175/1520-0493(1989)117<2305:AVNRNW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burleyson, C. D., S. P. deSzoeke, S. E. Yuter, M. Wilbanks, and W. A. Brewer, 2013: Ship-based observations of the diurnal cycle of southeast Pacific marine stratocumulus clouds and precipitation. J. Atmos. Sci., 70, 38763894, doi:10.1175/JAS-D-13-01.1.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and W. R. Cotton, 1987: The physics of the marine stratocumulus-capped mixed layer. J. Atmos. Sci., 44, 29512977, doi:10.1175/1520-0469(1987)044<2951:TPOTMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., R. Wood, S. E. Yuter, and C. S. Bretherton, 2004: Reflectivity and rain rate in and below drizzling stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 28912918, doi:10.1256/qj.03.187.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., C. S. Bretherton, and S. E. Yuter, 2005: Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37923807, doi:10.1175/JAS3567.1.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., 1983: Limitations of some common lateral boundary schemes used in regional NWP models. Mon. Wea. Rev., 111, 10021012, doi:10.1175/1520-0493(1983)111<1002:LOSCLB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., S. E. Yuter, P. Zuidema, C. W. Fairall, and W. A. Brewer, 2010: Ship-based observation of drizzling stratocumulus clouds from EPIC to VOCALS. CLIVAR Exchanges, No. 39, International CLIVAR Project Office, Southampton, United Kingdom,1113.

  • de Szoeke, S. P., S. E. Yuter, D. Mechem, C. W. Fairall, C. D. Burleyson, and P. Zuidema, 2012: Observations of stratocumulus clouds and their effect on the eastern Pacific surface heat budget along 20°S. J. Climate, 25, 85428567, doi:10.1175/JCLI-D-11-00618.1.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 21392156, doi:10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and R. Muñoz, 2004: The diurnal cycle in circulation and cloudiness over the subtropical South Pacific: A modeling study. J. Climate, 17, 16991710, doi:10.1175/1520-0442(2004)017<1699:TDCICA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., J.-L. Brenguier, and I. Sandu, 2008: Relationship between drizzle rate, liquid water path, and droplet concentration at the scale of a stratocumulus cloud system. Atmos. Chem. Phys., 8, 46414654, doi:10.5194/acp-8-4641-2008.

    • Search Google Scholar
    • Export Citation
  • Hill, A., B. Shipway, and I. Boutle, 2015: How sensitive are aerosol-precipitation interactions to the warm rain representation? J. Adv. Model. Earth Syst., 7, 9871004, doi:10.1002/2014MS000422.

    • Search Google Scholar
    • Export Citation
  • Hodur, R., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogg, D. C., F. O. Guiraud, J. B. Snider, M. T. Decker, and E. R. Westwater, 1983: A steerable dual-channel microwave radiometer for measurement of water vapor and liquid in the troposphere. J. Climate Appl. Meteor., 22, 789806, doi:10.1175/1520-0450(1983)022<0789:ASDCMR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., S. Noble, V. Jha, and S. Mishra, 2009: Correlations of small cumuli droplet and drizzle drop concentrations with cloud condenstaion nuclei concentrations. J. Geophys. Res., 114, D05201, doi:10.1029/2008JD010581.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., S. Noble, and V. Jha, 2010: Stratus cloud supersaturations. Geophys. Res. Lett., 37, L21813, doi:10.1029/2010GL045197.

  • Justice, C. O., and Coauthors, 1998: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens., 36, 12281249, doi:10.1109/36.701075.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32. Amer. Meteor. Soc., 84 pp.

  • Kessler, E., 1995: On the continuity and distribution of water substance in atmospheric circulations. Atmos. Res., 38, 109145, doi:10.1016/0169-8095(94)00090-Z.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Y. L. Kogan, 2000: A new cloud physics parameterization for large-eddy simulation models of marine stratocumulus. Mon. Wea. Rev., 128, 229243, doi:10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 2013: A cumulus cloud microphysics parameterization for cloud-resolving models. J. Atmos. Sci., 70, 14231436, doi:10.1175/JAS-D-12-0183.1.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., and D. B. Mechem, 2014: A PDF-based microphysics parameterization for shallow cumulus clouds. J. Atmos. Sci., 71, 10701089, doi:10.1175/JAS-D-13-0193.1.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995: Numerical simulations of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part I: Boundary-layer structure. J. Atmos. Sci., 52, 28392850, doi:10.1175/1520-0469(1995)052<2839:NSOTST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., R. Wood, P. R. Field, J.-C. Golaz, T. H. Vonder Haar, and W. R. Cotton, 2001: Systematic biases in the microphysics and thermodynamics of numerical models that ignore subgrid-scale variability. J. Atmos. Sci., 58, 11171128, doi:10.1175/1520-0469(2001)058<1117:SBITMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leach, M. J., and S. Raman, 1995: Role of radiative transfer in maintenance and destruction of stratocumulus clouds. Atmos. Environ., 29, 20092018, doi:10.1016/1352-2310(94)00242-D.

    • Search Google Scholar
    • Export Citation
  • Liu, M., J. E. Nachamkin, and D. L. Westphal, 2009: On the improvement of COAMPS weather forecasts using an advanced radiative transfer model. Wea. Forecasting, 24, 286306, doi:10.1175/2008WAF2222137.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 15391548, doi:10.1175/1520-0469(2004)061<1539:POTAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., P. H. Daum, and R. L. McGraw, 2005: Parameterization of the autoconversion process: Kessler-type, Sundqvist-type, and unification. Proc. 15th ARM Science Team Meeting, Daytona Beach, FL, ARM Program, 8 pp. [Available online at https://www.arm.gov/publications/proceedings/conf15/extended_abs/liu_y.pdf.]

  • Louis, J., M. Tiedtke, and J. F. Geleyn, 1982: A short history of the operational PBL—Parameterization at ECMWF. Proc. Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 5979. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/1982/10845-short-history-pbl-parameterization-ecmwf.pdf.]

  • Manton, M. J., and W. R. Cotton, 1977: Parameterization of the atmospheric surface layer. J. Atmos. Sci., 34, 331334, doi:10.1175/1520-0469(1977)034<0331:POTASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCaa, J. R., and C. S. Bretherton, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part II: Regional simulations of marine boundary layer clouds. Mon. Wea. Rev., 132, 883896, doi:10.1175/1520-0493(2004)132<0883:ANPFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., and Y. L. Kogan, 2003: Simulatin the transition from drizzling marine stratocumulus to boundary layer cumulus with a mesoscale model. Mon. Wea. Rev., 131, 23422360, doi:10.1175/1520-0493(2003)131<2342:STTFDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., and Y. L. Kogan, 2008: A bulk parameterization of giant CCN. J. Atmos. Sci., 65, 24582466, doi:10.1175/2007JAS2502.1.

  • Mechem, D. B., P. C. Robinson, and Y. L. Kogan, 2006: Processing of cloud condensation nuclei by collision-coalescence in a mesoscale model. J. Geophys. Res., 111, D18204, doi:10.1029/2006JD007183.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., and Coauthors, 2014: Ocean–cloud–atmosphere–land interactions in the southeastern Pacific: The VOCALS program. Bull. Amer. Meteor. Soc., 95, 357375, doi:10.1175/BAMS-D-11-00246.1.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., B. Stevens, I. M. Held, M. Zhao, D. L. Williamson, J. G. Olson, and C. S. Bretherton, 2008: Aquaplanets, climate sensitivity, and low clouds. J. Climate, 21, 49744991, doi:10.1175/2008JCLI1995.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005a: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, M. D. Shupe, and P. Zuidema, 2005b: A new double-moment microphysics parameterization for application in cloud and climate models. Part II: Single-column modeling of arctic clouds. J. Atmos. Sci., 62, 16781693, doi:10.1175/JAS3447.1.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., and P. Zuidema, 2011: Assessment of MODIS cloud effective radius and optical thickness retrievals over the southeast Pacific with VOCALS-REx in situ measurements. J. Geophys. Res., 116, D24206, doi:10.1029/2011JD016155.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and S. A. Klein, 2000: Unresolved spatial variability and microphysical process rates in large-scale models. J. Geophys. Res., 105, 27 05927 065, doi:10.1029/2000JD900504.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Ridi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and R. Garreaud, 2010a: Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx. Part 1: Mean structure and diurnal cycle. Atmos. Chem. Phys., 10, 44914506, doi:10.5194/acp-10-4491-2010.

    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and R. Garreaud, 2010b: Marine boundary layer over the subtropical southeast Pacific during VOCALS-Rex. Part 2: Synoptic variability. Atmos. Chem. Phys., 10, 45074519, doi:10.5194/acp-10-4507-2010.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947973, doi:10.1175/JAS3385.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. International Series in Natural Philosophy, Vol. 113, Butterworth Heinemann, 304 pp.

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, doi:10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 6782, doi:10.1007/s00703-005-0113-3.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605643, doi:10.1146/annurev.earth.33.092203.122658.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C.-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 36163638, doi:10.1175/1520-0469(1998)055<3616:LESOSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Toniazzo, T., S. J. Abel, R. Wood, C. R. Mechoso, G. Allen, and L. C. Shaffrey, 2011: Large-scale and synoptic meteorology in the south-east Pacific during the observations campaign VOCALS-REx in austral spring 2008. Atmos. Chem. Phys., 11, 49775009, doi:10.5194/acp-11-4977-2011.

    • Search Google Scholar
    • Export Citation
  • van Zanten, M. C., B. Stevens, G. Vali, and D. H. Lenschow, 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62, 88106, doi:10.1175/JAS-3355.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., L. W. O’Neil, Q. Jiang, S. P. de Szoeke, X. Hong, H. Jin, W. T. Thompson, and X. Zheng, 2011: A regional real-time forecast of marine boundary layers during VOCALS-REx. Atmos. Chem. Phys., 11, 421437, doi:10.5194/acp-11-421-2011.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62, 30343050, doi:10.1175/JAS3530.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2006: Rate of loss of cloud droplets by coalescence in warm clouds. J. Geophys. Res., 111, D21205, doi:10.1029/2006JD007553.

  • Wood, R., P. Field, and W. Cotton, 2002: Autoconversion rate bias in stratiform boundary layer cloud parameterizations. Atmos. Res., 65, 109128, doi:10.1016/S0169-8095(02)00071-6.

    • Search Google Scholar
    • Export Citation
  • Wood, R., M. Köhler, R. Bennartz, and C. O’Dell, 2009: The diurnal cycle of surface divergence over the global oceans. Quart. J. Roy. Meteor. Soc., 135, 14841493, doi:10.1002/qj.451.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS–REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, doi:10.5194/acp-11-627-2011.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and Coauthors, 2010: The PreVOCA experiment: Modeling the lower troposphere in the Southeast Pacific. Atmos. Chem. Phys., 10, 47574774, doi:10.5194/acp-10-4757-2010.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., and Coauthors, 2015: Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: The VOCA intercomparison. Atmos. Chem. Phys., 15, 153172, doi:10.5194/acp-15-153-2015.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., E. R. Westwater, C. Fairall, and D. Hazen, 2005: Ship-based liquid water path estimates in marine stratocumulus. J. Geophys. Res., 110, D20206, doi:10.1029/2005JD005833.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 28 9
PDF Downloads 75 19 2

Evaluation of Warm-Rain Microphysical Parameterizations in Mesoscale Simulations of the Cloudy Marine Boundary Layer

Kevin J. NelsonDepartment of Geography and Atmospheric Science, University of Kansas, Lawrence, Kansas

Search for other papers by Kevin J. Nelson in
Current site
Google Scholar
PubMed
Close
,
David B. MechemDepartment of Geography and Atmospheric Science, University of Kansas, Lawrence, Kansas

Search for other papers by David B. Mechem in
Current site
Google Scholar
PubMed
Close
, and
Yefim L. KoganCooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yefim L. Kogan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Several warm-rain microphysical parameterizations are evaluated in a regional forecast model setting (using the Naval Research Laboratory’s Coupled Ocean–Atmosphere Mesoscale Prediction System) by evaluating how accurately the model is able to represent the marine boundary layer (MBL). Cloud properties from a large suite of simulations using different parameterizations and concentrations of cloud condensation nuclei (CCN) are compared to ship-based observations from the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study—Regional Experiment (VOCALS-REx) field campaign conducted over the southeastern Pacific (SEP). As in previous studies, the simulations systematically underestimate liquid water path and MBL cloud depth. On the other hand, the simulations overestimate precipitation rates relative to those derived from the scanning C-band radar on board the ship. Most of the simulations exhibit a diurnal cycle, although details differ somewhat from a recent observational study. In addition to direct comparisons with the observations, the internal microphysical consistency of simulated MBL cloud properties is assessed by comparing simulation output to a number of observationally and theoretically derived scalings for precipitation and coalescence scavenging. Simulation results are broadly consistent with these scalings, suggesting COAMPS is behaving in a microphysically consistent fashion. However, microphysical consistency as defined in the analysis is highly dependent upon the horizontal resolution of the model. Excessive depletion of CCN from large coalescence processing rates suggests the importance of parameterizing a source term for CCN or imposing some form of fixed, climatological background CCN concentration.

Corresponding author address: D. B. Mechem, Dept. of Geography and Atmospheric Science, University of Kansas, 1475 Jayhawk Blvd., Room 213, Lawrence, KS 66045. E-mail: dmechem@ku.edu

Abstract

Several warm-rain microphysical parameterizations are evaluated in a regional forecast model setting (using the Naval Research Laboratory’s Coupled Ocean–Atmosphere Mesoscale Prediction System) by evaluating how accurately the model is able to represent the marine boundary layer (MBL). Cloud properties from a large suite of simulations using different parameterizations and concentrations of cloud condensation nuclei (CCN) are compared to ship-based observations from the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study—Regional Experiment (VOCALS-REx) field campaign conducted over the southeastern Pacific (SEP). As in previous studies, the simulations systematically underestimate liquid water path and MBL cloud depth. On the other hand, the simulations overestimate precipitation rates relative to those derived from the scanning C-band radar on board the ship. Most of the simulations exhibit a diurnal cycle, although details differ somewhat from a recent observational study. In addition to direct comparisons with the observations, the internal microphysical consistency of simulated MBL cloud properties is assessed by comparing simulation output to a number of observationally and theoretically derived scalings for precipitation and coalescence scavenging. Simulation results are broadly consistent with these scalings, suggesting COAMPS is behaving in a microphysically consistent fashion. However, microphysical consistency as defined in the analysis is highly dependent upon the horizontal resolution of the model. Excessive depletion of CCN from large coalescence processing rates suggests the importance of parameterizing a source term for CCN or imposing some form of fixed, climatological background CCN concentration.

Corresponding author address: D. B. Mechem, Dept. of Geography and Atmospheric Science, University of Kansas, 1475 Jayhawk Blvd., Room 213, Lawrence, KS 66045. E-mail: dmechem@ku.edu
Save