• Ahrens, J. H., and U. Dieter, 1982: Computer generation of Poisson deviates from modified normal distributions. ACM Trans. Math. Software, 8, 163179, doi:10.1145/355993.355997.

    • Search Google Scholar
    • Export Citation
  • Alessandri, A., A. Borrelli, S. Gualdi, E. Scoccimarro, and S. Masina, 2011: Tropical cyclone count forecasting using a dynamical seasonal prediction system: Sensitivity to improved ocean initialization. J. Climate, 24, 29632982, doi:10.1175/2010JCLI3585.1.

    • Search Google Scholar
    • Export Citation
  • Bove, M. C., J. B. Elsner, C. W. Landsea, X. Niu, and J. J. O’Brien, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79, 24772482, doi:10.1175/1520-0477(1998)079<2477:EOENOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. G. Barnston, 2009: Experimental seasonal dynamical forecasts of tropical cyclone activity at IRI. Wea. Forecasting, 24, 472491, doi:10.1175/2008WAF2007099.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. G. Barnston, P. J. Klotzbach, and C. W. Landsea, 2007: Seasonal tropical cyclone forecasts. WMO Bull., 56, 297309.

    • Search Google Scholar
    • Export Citation
  • Camp, J., M. Roberts, C. MacLachlan, E. Wallace, L. Hermanson, A. Brookshaw, A. Arribas, and A. A. Scaife, 2015: Seasonal forecasting of tropical storms using the Met Office GloSea5 seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 22062219, doi:10.1002/qj.2516.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2011: The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, doi:10.1029/2011GL047629.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, doi:10.1175/JCLI-D-12-00061.1.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, doi:10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Colbert, A. J., and B. J. Soden, 2012: Climatological variations in North Atlantic tropical cyclone tracks. J. Climate, 25, 657673, doi:10.1175/JCLI-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, doi:10.1007/s003820000075.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, A. Rosati, G. A. Vecchi, and A. T. Witternberg, 2015: A link between the hiatus in global warming and North American drought. J. Climate, 28, 38343845, doi:10.1175/JCLI-D-14-00616.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., 2003: Tracking hurricanes. Bull. Amer. Meteor. Soc., 84, 353356, doi:10.1175/BAMS-84-3-353.

  • Elsner, J. B., and C. P. Schmertmann, 1993: Improving extended-range seasonal predictions of intense Atlantic hurricane activity. Wea. Forecasting, 8, 345351, doi:10.1175/1520-0434(1993)008<0345:IERSPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and B. Kocher, 2000: Global tropical cyclone activity: A link to the North Atlantic oscillation. Geophys. Res. Lett., 27, 129132, doi:10.1029/1999GL010893.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and T. H. Jagger, 2006: Prediction models for annual U.S. hurricane counts. J. Climate, 19, 29352952, doi:10.1175/JCLI3729.1.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and T. H. Jagger, 2013: Frequency models. Hurricane Climatology: A Modern Statistical Guide Using R, Oxford University Press, 161–193.

  • Elsner, J. B., K.-B. Liu, and B. Kocher, 2000: Spatial variations in major U.S. hurricane activity: Statistics and a physical mechanism. J. Climate, 13, 22932305, doi:10.1175/1520-0442(2000)013<2293:SVIMUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., J. Murnane, and T. H. Jagger, 2006: Forecasting U.S. hurricanes 6 months in advance. Geophys. Res. Lett., 33, L10704, doi:10.1029/2006GL025693.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ineson, and J. W. Hurrell, 2009: The summer North Atlantic Oscillation: Past, present, and future. J. Climate, 22, 10821103, doi:10.1175/2008JCLI2459.1.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697, doi:10.1175/JCLI3630.1.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984a: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, doi:10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984b: Atlantic seasonal hurricane frequency. Part II: Forecasting its variability. Mon. Wea. Rev., 112, 16691683, doi:10.1175/1520-0493(1984)112<1669:ASHFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., C. W. Landsea, P. W. Mielke, and K. J. Berry, 1992: Predicting Atlantic seasonal hurricane activity 6–11 months in advance. Wea. Forecasting, 7, 440455, doi:10.1175/1520-0434(1992)007<0440:PASHAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., C. W. Landsea, P. W. Mielke, and K. J. Berry, 1993: Predicting Atlantic seasonal hurricane activity by 1 August. Wea. Forecasting, 8, 7386, doi:10.1175/1520-0434(1993)008<0073:PABSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., C. W. Landsea, P. W. Mielke, and K. J. Berry, 1994: Predicting Atlantic seasonal hurricane activity by 1 June. Wea. Forecasting, 9, 103115, doi:10.1175/1520-0434(1994)009<0103:PABSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hastie, T., R. Tibshirani, and J. Friedman, 2009: The wrong and right way to do cross-validation. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer-Verlag, 245–247.

  • Holland, G. J., 2007: Misuse of landfall as a proxy for Atlantic tropical cyclone activity. Eos, Trans. Amer. Geophys. Union, 88, 349356, doi:10.1029/2007EO360001.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J., and NCAR Research Staff, 2015: The climate data guide: Hurrell North Atlantic Oscillation (NAO) index (station-based). NCAR Climate Data Guide, accessed 20 April 2016. [Available online at https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based.]

  • Jagger, T. H., and J. B. Elsner, 2010: A consensus model for seasonal hurricane prediction. J. Climate, 23, 60906099, doi:10.1175/2010JCLI3686.1.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, doi:10.1175/JCLI-D-14-00112.1.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2016: The roles of radiative forcing, sea surface temperatures, and atmospheric and land initial conditions in U.S. summer warming episodes. J. Climate, doi:10.1175/JCLI-D-15-0471.1, in press.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., T. Jónsson, and D. Wheeler, 1997: Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol., 17, 14331450, doi:10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., C.-H. Ho, and P.-S. Chu, 2011: Pattern classification of typhoon tracks using the fuzzy c-means clustering method. J. Climate, 24, 488508, doi:10.1175/2010JCLI3751.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., C.-H. Ho, J.-H. Kim, and P.-S. Chu, 2012: Track-pattern–based model for seasonal prediction of tropical cyclone activity in the western North Pacific. J. Climate, 25, 46604678, doi:10.1175/JCLI-D-11-00236.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., K. Edmund, M. Chang, and M. Zhang, 2015: Statistical–dynamical seasonal forecast for tropical cyclones affecting New York State. Wea. Forecasting, 30, 295307, doi:10.1175/WAF-D-14-00089.1.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 Seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2008: Refinements to Atlantic basin seasonal hurricane prediction from 1 December. J. Geophys. Res., 113, D17109, doi:10.1029/2008JD010047.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2003: Forecasting September Atlantic basin tropical cyclone activity. Wea. Forecasting, 18, 11091128, doi:10.1175/1520-0434(2003)018<1109:FSABTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2004: Updated 6–11-month prediction of Atlantic basin seasonal hurricane activity. Wea. Forecasting, 19, 917934, doi:10.1175/1520-0434(2004)019<0917:UMPOAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2009: Twenty-five years of Atlantic basin seasonal hurricane forecasts (1984–2008). Geophys. Res. Lett., 36, L09711, doi:10.1029/2009GL037580.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2012: Qualitative discussion of Atlantic basin seasonal hurricane activity for 2012. Department of Atmospheric Science, Colorado State University, 27 pp. [Available online at http://hurricane.atmos.colostate.edu/forecasts/2011/dec2011/dec2011.pdf.]

  • Klotzbach, P. J., and W. M. Gray, 2015: Extended range forecast of Atlantic seasonal hurricane activity and landfall strike probability for 2015. Department of Atmospheric Science, Colorado State University, 38 pp. [Available online at http://tropical.atmos.colostate.edu/forecasts/2015/june2015/jun2015.pdf.]

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neuman, 2010: The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, doi:10.1175/JCLI-D-12-00539.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, doi:10.1175/2010JCLI3497.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349352, doi:10.1038/nature13278.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., T. R. Karl, T. R. Knutson, K. A. Emanuel, K. E. Kunkel, and J. J. O’Brien, 2015: Reply to ‘Comment on “Monitoring and understanding trends in extreme storms: State of knowledge.”’ Bull. Amer. Meteor. Soc., 96, 11771179, doi:10.1175/BAMS-D-14-00261.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • LaRow, T. E., Y.-K. Lim, D. W. Shin, E. P. Chassgnet, and S. Cocke, 2008: Atlantic basin seasonal hurricane simulations. J. Climate, 21, 31913206, doi:10.1175/2007JCLI2036.1.

    • Search Google Scholar
    • Export Citation
  • LaRow, T. E., L. Stefanova, D.-W. Shin, and S. Cocke, 2010: Seasonal Atlantic tropical cyclone hindcasting/forecasting using two sea surface temperature datasets. Geophys. Res. Lett., 37, L02804, doi:10.1029/2009GL041459.

    • Search Google Scholar
    • Export Citation
  • Latif, M., N. Keenlyside, and J. Bader, 2007: Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys. Res. Lett., 34, L01710, doi:10.1029/2006GL027969.

    • Search Google Scholar
    • Export Citation
  • Lehmiller, G. S., T. B. Kimberlain, and J. B. Elsner, 1997: Seasonal prediction models for North Atlantic basin hurricane location. Mon. Wea. Rev., 125, 17801791, doi:10.1175/1520-0493(1997)125<1780:SPMFNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, X., S. Yang, H. Wang, X. Jia, and A. Kumar, 2013: A dynamical-statistical forecast model for the annual frequency of western Pacific tropical cyclones based on the NCEP Climate Forecast System version 2. J. Geophys. Res. Atmos., 118, 12 06112 074, doi:10.1002/2013JD020708.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., R. Mizuta, and E. Shindo, 2012: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39, 25692584, doi:10.1007/s00382-011-1223-x.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2015: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079, doi:10.1175/JCLI-D-15-0216.1.

    • Search Google Scholar
    • Export Citation
  • Nakano, M., M. Sawada, T. Nasuno, and M. Satoh, 2015: Intraseasonal variability and tropical cyclogenesis in the western North Pacific simulated by a global nonhydrostatic atmospheric model. Geophys. Res. Lett., 42, 565571, doi:10.1002/2014GL062479.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., J. Gratz, C. W. Landsea, D. Collins, M. A. Saunders, and R. Musulin, 2008: Normalized hurricane damage in the United States: 1990–2005. Nat. Hazards Rev., 9, 2942, doi:10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Search Google Scholar
    • Export Citation
  • Portis, D. H., J. E. Walsh, M. El Hamly, and P. J. Lamb, 2001: Seasonality of the North Atlantic Oscillation. J. Climate, 14, 20692078, doi:10.1175/1520-0442(2001)014<2069:SOTNAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., and A. H. Sobel, 2011: Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Climate, 24, 183193, doi:10.1175/2010JCLI3690.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, and D. P. Rowell, 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Saunders, M. A., and A. S. Lea, 2005: Seasonal prediction of hurricane activity reaching the coast of the United States. Nature, 434, 10051008, doi:10.1038/nature03454.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett., 32, L18715, doi:10.1029/2005GL023226.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, doi:10.1002/2014GL059637.

    • Search Google Scholar
    • Export Citation
  • Servain, J., I. Wainer, J. P. McCreary, and A. Dessier, 1999: Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. Geophys. Res. Lett., 26, 485488, doi:10.1029/1999GL900014.

    • Search Google Scholar
    • Export Citation
  • Smith, A. B., and R. W. Katz, 2013: US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards, 67, 387410, doi:10.1007/s11069-013-0566-5.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2008: Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst., 9, Q04V01, doi:10.1029/2007GC001844.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and G. Villarini, 2014: Next season’s hurricanes. Science, 343, 618619, doi:10.1126/science.1247759.

  • Vecchi, G. A., K. L. Swanson, and B. J. Soden, 2008: Whither hurricane activity? Science, 322, 687689, doi:10.1126/science.1164396.

  • Vecchi, G. A., M. Zhao, H. Wang, G. Villarini, A. Rosati, A. Kumar, I. M. Held, and R. Gudgel, 2011: Statistical–dynamical predictions of seasonal North Atlantic hurricane activity. Mon. Wea. Rev., 139, 10701082, doi:10.1175/2010MWR3499.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2013: Multiyear predictions of North Atlantic hurricane frequency: Promise and limitations. J. Climate, 26, 79948016, doi:10.1175/JCLI-D-12-00464.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, doi:10.1175/JCLI-D-14-00158.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2012: North Atlantic power dissipation index (PDI) and accumulated cyclone energy (ACE): Statistical modelling and sensitivity to sea surface temperature. J. Climate, 25, 625637, doi:10.1175/JCLI-D-11-00146.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and G. A. Vecchi, 2013: Multiseason lead forecast of the North Atlantic power dissipation index (PDI) and accumulated cyclone energy (ACE). J. Climate, 26, 36313643, doi:10.1175/JCLI-D-12-00448.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, and J. A. Smith, 2010: Modeling of the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon. Wea. Rev., 138, 26812705, doi:10.1175/2010MWR3315.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, T. R. Knutson, M. Zhao, and J. A. Smith, 2011: North Atlantic tropical storm frequency response to anthropogenic forcing: Projections and sources of uncertainty. J. Climate, 24, 32243238, doi:10.1175/2011JCLI3853.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., G. A. Vecchi, and J. A. Smith, 2012: U.S. landfalling and North Atlantic hurricanes: Statistical modelling of their frequencies and ratios. Mon. Wea. Rev., 140, 4465, doi:10.1175/MWR-D-11-00063.1.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, doi:10.1029/2007GL029683.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2006: Seasonal forecasting of tropical storm frequency using a multi-model ensemble. Quart. J. Roy. Meteor. Soc., 132, 647666, doi:10.1256/qj.05.65.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and T. N. Stockdale, 2001: Seasonal forecasting of tropical storms using coupled GCM integrations. Mon. Wea. Rev., 129, 25212537, doi:10.1175/1520-0493(2001)129<2521:SFOTSU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett., 34, L16815, doi:10.1029/2007GL030740.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J.-K. E. Schemm, A. Kumar, W. Wang, L. Long, M. Chelliah, G. D. Bell, and P. Peng, 2009: A statistical forecast model for Atlantic seasonal hurricane activity based on the NCEP dynamical seasonal forecast. J. Climate, 22, 44814500, doi:10.1175/2009JCLI2753.1.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical pacific climate and ENSO. J. Climate, 19, 698722, doi:10.1175/JCLI3631.1.

    • Search Google Scholar
    • Export Citation
  • Xiang, B., S.-J. Lin, M. Zhao, S. Zhang, G. Vecchi, T. Li, X. Jiang, L. Harris, and J.-H. Chen, 2015a: Beyond weather time scale prediction for Hurricane Sandy and Super Typhoon Haiyan in a global climate model. Mon. Wea. Rev., 143, 524535, doi:10.1175/MWR-D-14-00227.1.

    • Search Google Scholar
    • Export Citation
  • Xiang, B., M. Zhao, X. Jiang, S.-J. Lin, T. Li, X. Fu, and G. Vecchi, 2015b: The 3–4-week MJO prediction skill in a GFDL coupled model. J. Climate, 28, 53515364, doi:10.1175/JCLI-D-15-0102.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophy. Union, 121–142.

  • Yan, T., L. J. Pietrafesa, D. A. Dickey, P. T. Gayes, and S. Bao, 2015: Seasonal prediction of landfalling hurricanes along eastern seaboard of the United States. Int. J. Climatol., 35, 26472653, doi:10.1002/joc.4163.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., and A. Rosati, 2010: An inflated ensemble filter for ocean data assimilation with a biased coupled GCM. Mon. Wea. Rev., 138, 39053931, doi:10.1175/2010MWR3326.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., I. M. Held, and G. A. Vecchi, 2010: Forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 38583868, doi:10.1175/2010MWR3366.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 458 261 19
PDF Downloads 263 108 8

Statistical–Dynamical Seasonal Forecast of North Atlantic and U.S. Landfalling Tropical Cyclones Using the High-Resolution GFDL FLOR Coupled Model

Hiroyuki MurakamiNational Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, and Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Hiroyuki Murakami in
Current site
Google Scholar
PubMed
Close
,
Gabriele VillariniIIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Gabriele Villarini in
Current site
Google Scholar
PubMed
Close
,
Gabriel A. VecchiNational Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, and Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Gabriel A. Vecchi in
Current site
Google Scholar
PubMed
Close
,
Wei ZhangNational Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, and Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Wei Zhang in
Current site
Google Scholar
PubMed
Close
, and
Richard GudgelNational Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Richard Gudgel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Retrospective seasonal forecasts of North Atlantic tropical cyclone (TC) activity over the period 1980–2014 are conducted using a GFDL high-resolution coupled climate model [Forecast-Oriented Low Ocean Resolution (FLOR)]. The focus is on basin-total TC and U.S. landfall frequency. The correlations between observed and model predicted basin-total TC counts range from 0.4 to 0.6 depending on the month of the initial forecast. The correlation values for U.S. landfalling activity based on individual TCs tracked from the model are smaller and between 0.1 and 0.4. Given the limited skill from the model, statistical methods are used to complement the dynamical seasonal TC prediction from the FLOR model. Observed and predicted TC tracks were classified into four groups using fuzzy c-mean clustering to evaluate the model’s predictability in observed classification of TC tracks. Analyses revealed that the FLOR model has the highest skill in predicting TC frequency for the cluster of TCs that tracks through the Caribbean and the Gulf of Mexico.

New hybrid models are developed to improve the prediction of observed basin-total TC and landfall TC frequencies. These models use large-scale climate predictors from the FLOR model as predictors for generalized linear models. The hybrid models show considerable improvements in the skill in predicting the basin-total TC frequencies relative to the dynamical model. The new hybrid model shows correlation coefficients as high as 0.75 for basinwide TC counts from the first two lead months and retains values around 0.50 even at the 6-month lead forecast. The hybrid model also shows comparable or higher skill in forecasting U.S. landfalling TCs relative to the dynamical predictions. The correlation coefficient is about 0.5 for the 2–5-month lead times.

Corresponding author address: Hiroyuki Murakami, NOAA/GFDL, 201 Forrestal Rd., Princeton, NJ 08540-6649. E-mail: hir.murakami@gmail.com

Abstract

Retrospective seasonal forecasts of North Atlantic tropical cyclone (TC) activity over the period 1980–2014 are conducted using a GFDL high-resolution coupled climate model [Forecast-Oriented Low Ocean Resolution (FLOR)]. The focus is on basin-total TC and U.S. landfall frequency. The correlations between observed and model predicted basin-total TC counts range from 0.4 to 0.6 depending on the month of the initial forecast. The correlation values for U.S. landfalling activity based on individual TCs tracked from the model are smaller and between 0.1 and 0.4. Given the limited skill from the model, statistical methods are used to complement the dynamical seasonal TC prediction from the FLOR model. Observed and predicted TC tracks were classified into four groups using fuzzy c-mean clustering to evaluate the model’s predictability in observed classification of TC tracks. Analyses revealed that the FLOR model has the highest skill in predicting TC frequency for the cluster of TCs that tracks through the Caribbean and the Gulf of Mexico.

New hybrid models are developed to improve the prediction of observed basin-total TC and landfall TC frequencies. These models use large-scale climate predictors from the FLOR model as predictors for generalized linear models. The hybrid models show considerable improvements in the skill in predicting the basin-total TC frequencies relative to the dynamical model. The new hybrid model shows correlation coefficients as high as 0.75 for basinwide TC counts from the first two lead months and retains values around 0.50 even at the 6-month lead forecast. The hybrid model also shows comparable or higher skill in forecasting U.S. landfalling TCs relative to the dynamical predictions. The correlation coefficient is about 0.5 for the 2–5-month lead times.

Corresponding author address: Hiroyuki Murakami, NOAA/GFDL, 201 Forrestal Rd., Princeton, NJ 08540-6649. E-mail: hir.murakami@gmail.com
Save