• Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and C.-M. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 19771992, doi:10.1175/JAS-D-12-0330.1.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., J.-H. Jung, and C.-M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, doi:10.5194/acp-11-3731-2011.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, doi:10.1175/JAS-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, doi:10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603626, doi:10.1175/2008JAS2677.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dobson, J. B., D. A. Randall, and K. Suzuki, 2013: Comparison of observed and simulated tropical cumuliform clouds by CloudSat and NICAM. J. Geophys. Res. Atmos., 118, 18521867, doi:10.1002/jgrd.50121.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., Y. Lin, T. Black, E. Rogers, and G. DiMego, 2002: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. Preprints, 19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280283.

  • Fox-Rabinovitz, M. S., G. L. Stenchikov, M. J. Suarez, L. L. Takacs, and R. C. Govindaraju, 2000: A uniform- and variable-resolution stretched-grid GCM dynamical core with realistic orography. Mon. Wea. Rev., 128, 18831898, doi:10.1175/1520-0493(2000)128<1883:AUAVRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., and Coauthors, 2009: The coupled aerosol and tracer transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)—Part I: Model description and evaluation. Atmos. Chem. Phys., 9, 28432861, doi:10.5194/acp-9-2843-2009.

    • Search Google Scholar
    • Export Citation
  • Gerard, L., J.-M. Piriou, R. Brozkova, J.-F. Geleyn, and D. Banciu, 2009: Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model. Mon. Wea. Rev., 137, 39603977, doi:10.1175/2009MWR2750.1.

    • Search Google Scholar
    • Export Citation
  • Gomes, J. L., and S. C. Chou, 2010: Dependence of partitioning of model implicit and explicit precipitation on horizontal resolution. Meteor. Atmos. Phys., 106, 118, doi:10.1007/s00703-009-0050-7.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combing ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 38-138-4, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, doi:10.5194/acp-14-5233-2014.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130, 31393172, doi:10.1256/qj.03.145.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer, 3–22.

  • Iacono, M. J., E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR Community Climate Model, CCM3. J. Geophys. Res., 105, 14 87314 890, doi:10.1029/2000JD900091.

    • Search Google Scholar
    • Export Citation
  • Ju, L., T. Ringler, and M. Gunzburger, 2011: Voronoi tessellations and their applications to climate and global modeling. Numerical Techniques for Global Atmospheric Models, P. Lauritzen et al., Eds., Springer, 313–342.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

  • Klemp, J. B., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139, 21632169, doi:10.1175/MWR-D-10-05046.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 28972913, doi:10.1175/MWR3440.1.

    • Search Google Scholar
    • Export Citation
  • Kuell, V., A. Gassmann, and A. Bott, 2007: Towards a new hybrid cumulus parameterization scheme for use in non-hydrostatic weather prediction models. Quart. J. Roy. Meteor. Soc., 133, 479490, doi:10.1002/qj.28.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., Z. I. Janjić, S. Nickovic, D. Gavrilov, and D. G. Deaven, 1988: The step-mountain coordinate: Model description and performance for cases of alpine lee cyclogenesis and for a case of an Appalachian redevelopment. Mon. Wea. Rev., 116, 14931518, doi:10.1175/1520-0493(1988)116<1493:TSMCMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, doi:10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • Park, S.-H., W. C. Skamarock, J. B. Klemp, L. D. Fowler, and M. G. Duda, 2013: Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case. Mon. Wea. Rev., 141, 31163129, doi:10.1175/MWR-D-12-00096.1.

    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., L. D. Ju, and M. Gunzburger, 2008: A multiresolution method for climate system modeling: Application of spherical Voronoi tessellations. Ocean Dyn., 58, 475498, doi:10.1007/s10236-008-0157-2.

    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., J. Thuburn, J. B. Klemp, and W. C. Skamarock, 2010: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. J. Comput. Phys., 229, 30653090, doi:10.1016/j.jcp.2009.12.007.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Masuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving model simulations. J. Comput. Phys., 227, 34863514, doi:10.1016/j.jcp.2007.02.006.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Inoue, and H. Miura, 2010: Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators. J. Geophys. Res., 115, D00H14, doi:10.1029/2009JD012247.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97, 471489, doi:10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. H. Simpson, D. A. Andrews, and M. A. Eaton, 1965: Experimental cumulus dynamics. Rev. Geophys., 3, 387431, doi:10.1029/RG003i003p00387.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and A. Gassmann, 2011: Conservative transport schemes for spherical geodesic grids: High-order flux operators for ODE-based time integration. Mon. Wea. Rev., 139, 29622975, doi:10.1175/MWR-D-10-05056.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using Centroidal Voronoi tessellations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, doi:10.1175/MWR-D-11-00215.1.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 2002: Spectral representation of rain profiles and diurnal variations observed with TRMM PR over the equatorial area. Geophys. Res. Lett., 29, 1584, doi:10.1029/2001GL014113.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and R. Avissar, 2008: The Ocean–Land–Atmosphere Model (OLAM). Part I: Shallow-water tests. Mon. Wea. Rev., 136, 40334044, doi:10.1175/2008MWR2522.1.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., and A. Arakawa, 2014: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part II. J. Atmos. Sci., 71, 20892013, doi:10.1175/JAS-D-13-0382.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53, 30843102, doi:10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeh, K.-S., J. Cote, S. Gravel, A. Methot, A. Patoine, M. Roch, and A. Staniforth, 2002: The CMC–MRB Global Environmental Multiscale (GEM) model. Part III: Nonhydrostatic formulation. Mon. Wea. Rev., 130, 339356, doi:10.1175/1520-0493(2002)130<0339:TCMGEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 555 217 25
PDF Downloads 473 164 13

Analyzing the Grell–Freitas Convection Scheme from Hydrostatic to Nonhydrostatic Scales within a Global Model

Laura D. FowlerNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Laura D. Fowler in
Current site
Google Scholar
PubMed
Close
,
William C. SkamarockNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by William C. Skamarock in
Current site
Google Scholar
PubMed
Close
,
Georg A. GrellNOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Georg A. Grell in
Current site
Google Scholar
PubMed
Close
,
Saulo R. FreitasCenter for Weather Forecasting and Climate Studies, INPE, Cachoeira Paulista, São Paulo, Brazil

Search for other papers by Saulo R. Freitas in
Current site
Google Scholar
PubMed
Close
, and
Michael G. DudaNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Michael G. Duda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors implemented the Grell–Freitas (GF) parameterization of convection in which the cloud-base mass flux varies quadratically as a function of the convective updraft fraction in the global nonhydrostatic Model for Prediction Across Scales (MPAS). They evaluated the performance of GF using quasi-uniform meshes and a variable-resolution mesh centered over South America, the resolution of which varied between hydrostatic (50 km) and nonhydrostatic (3 km) scales. Four-day forecasts using a 50-km and a 15-km quasi-uniform mesh, initialized with GFS data for 0000 UTC 10 January 2014, reveal that MPAS overestimates precipitation in the tropics relative to the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis data. Results of 4-day forecasts using the variable-resolution mesh reveal that over the refined region of the mesh, GF performs as a precipitating shallow convective scheme, whereas over the coarse region of the mesh, GF acts as a conventional deep convective scheme. As horizontal resolution increases and subgrid-scale motions become increasingly resolved, the contribution of convective and grid-scale precipitation to the total precipitation decreases and increases, respectively. Probability density distributions of precipitation highlight a smooth transition in the partitioning between convective and grid-scale precipitation, including at gray-zone scales across the transition region between the coarsest and finest regions of the global mesh. Variable-resolution meshes spanning between hydrostatic and nonhydrostatic scales are shown to be ideal tools to evaluate the horizontal scale dependence of parameterized convective and grid-scale moist processes.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Laura D. Fowler, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: laura@ucar.edu

Abstract

The authors implemented the Grell–Freitas (GF) parameterization of convection in which the cloud-base mass flux varies quadratically as a function of the convective updraft fraction in the global nonhydrostatic Model for Prediction Across Scales (MPAS). They evaluated the performance of GF using quasi-uniform meshes and a variable-resolution mesh centered over South America, the resolution of which varied between hydrostatic (50 km) and nonhydrostatic (3 km) scales. Four-day forecasts using a 50-km and a 15-km quasi-uniform mesh, initialized with GFS data for 0000 UTC 10 January 2014, reveal that MPAS overestimates precipitation in the tropics relative to the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis data. Results of 4-day forecasts using the variable-resolution mesh reveal that over the refined region of the mesh, GF performs as a precipitating shallow convective scheme, whereas over the coarse region of the mesh, GF acts as a conventional deep convective scheme. As horizontal resolution increases and subgrid-scale motions become increasingly resolved, the contribution of convective and grid-scale precipitation to the total precipitation decreases and increases, respectively. Probability density distributions of precipitation highlight a smooth transition in the partitioning between convective and grid-scale precipitation, including at gray-zone scales across the transition region between the coarsest and finest regions of the global mesh. Variable-resolution meshes spanning between hydrostatic and nonhydrostatic scales are shown to be ideal tools to evaluate the horizontal scale dependence of parameterized convective and grid-scale moist processes.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Laura D. Fowler, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: laura@ucar.edu
Save