• Bao, J. W., S. G. Gopalakrishnan, S. A. Michelson, F. D. Marks, and M. T. Montgomery, 2012: Impact of physics representations in the HWRFX on simulated hurricane structure and pressure–wind relationships. Mon. Wea. Rev., 140, 32783299, doi:10.1175/MWR-D-11-00332.1.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and H. T. Ochs, 1984: Collection and coalescence efficiencies for accretion. J. Geophys. Res., 89, 71657169, doi:10.1029/JD089iD05p07165.

    • Search Google Scholar
    • Export Citation
  • Beheng, K. D., 2010: The evolution of raindrop spectra: A review of microphysical essentials. Rainfall: State of the Science, F. Y. Testik and M. Gebremichael, Eds., Amer. Geophys. Union, 29–48, doi:10.1029/2010GM000957.

  • Cober, S. G., A. Tremblay, and G. A. Isaac, 1996: Comparisons of SSM/I liquid water paths with aircraft measurements. J. Appl. Meteor., 35, 503519, doi:10.1175/1520-0450(1996)035<0503:COSLWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. Bryan, and S. C. van den Heever, 2010: Storm and Cloud Dynamics. International Geophysics, Vol. 99, Academic Press, 820 pp.

  • Davidson, N. E., and Coauthors, 2014: ACCESS-TC: Vortex specification, 4DVAR initialization, verification, and structure diagnostics. Mon. Wea. Rev., 142, 12651289, doi:10.1175/MWR-D-13-00062.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 19972017, doi:10.1256/qj.04.134.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., and M. Pfeifer, 2008: Intercomparison of simulations using 5 WRF microphysical schemes with dual-polarization data for a German squall line. Adv. Geosci., 16, 109116, doi:10.5194/adgeo-16-109-2008.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., E. Ruprecht, and R. Phelps, 1975: Relative humidity in tropical weather systems. Mon. Wea. Rev., 103, 685690, doi:10.1175/1520-0493(1975)103<0685:RHITWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Houze, R. A., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, doi:10.1175/2009MWR2989.1.

  • Houze, R. A., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36, 156162, doi:10.1175/1520-0469(1979)036<0156:SDOPPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., and Coauthors, 2014: The impact of ice phase cloud parameterizations on tropical cyclone prediction. Mon. Wea. Rev., 142, 606625, doi:10.1175/MWR-D-13-00058.1.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Lamb, D., 2001: Rain production in convective storms. Severe Convective Storms, Meteor. Monogr., No. 28, Amer. Meteor. Soc., 299–321.

  • Langlois, W. E., 1973: A rapidly convergent procedure for computing large-scale condensation in a dynamical weather model. Tellus, 25A, 8687, doi:10.1111/j.2153-3490.1973.tb01598.x.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and R. McTaggart-Cowan, 2010: Sedimentation-induced errors in bulk microphysics schemes. J. Atmos. Sci., 67, 39313948, doi:10.1175/2010JAS3541.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, and M. J. Iacono, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., S. A. Tessendorf, K. Ikeda, and G. Thompson, 2012: Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon. Wea. Rev., 140, 24372460, doi:10.1175/MWR-D-11-00283.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishers, 954 pp.

  • Reeves, H. D., and D. T. Dawson, 2013: The dependence of QPF on the choice of microphysical parameterization for lake-effect snowstorms. J. Appl. Meteor. Climatol., 52, 363377, doi:10.1175/JAMC-D-12-019.1.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, doi:10.1002/qj.49712454804.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon Press, 293 pp + xiv.

  • Seifert, A., 2008: On the parameterization of evaporation of raindrops as simulated by a one-dimensional rainshaft model. J. Atmos. Sci., 65, 36083619, doi:10.1175/2008JAS2586.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, doi:10.1007/s00703-005-0112-4.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Straka, J. M., 2011: Cloud and Precipitation Microphysics: Principles and Parameterizations. Cambridge University Press, 392 pp.

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., A. M. Vogelmann, H. Morrison, and J. A. Milbrandt, 2012: Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Mon. Wea. Rev., 140, 18831907, doi:10.1175/MWR-D-11-00120.1.

    • Search Google Scholar
    • Export Citation
  • Verlinde, H., and W. R. Cotton, 1993: Fitting microphysical observations of nonsteady convective clouds to a numerical model: An application of the adjoint technique of data assimilation to a kinematic model. Mon. Wea. Rev., 121, 27762793, doi:10.1175/1520-0493(1993)121<2776:FMOONC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. Q., 1995: An inverse balance equation in sigma-coordinates for model initialization. Mon. Wea. Rev., 123, 482488, doi:10.1175/1520-0493(1995)123<0482:AIBEIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 250 119 6
PDF Downloads 161 48 1

Pathways to the Production of Precipitating Hydrometeors and Tropical Cyclone Development

J.-W. BaoNOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by J.-W. Bao in
Current site
Google Scholar
PubMed
Close
,
S. A. MichelsonNOAA/Earth System Research Laboratory and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by S. A. Michelson in
Current site
Google Scholar
PubMed
Close
, and
E. D. GrellNOAA/Earth System Research Laboratory and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by E. D. Grell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Pathways to the production of precipitation in two cloud microphysics schemes available in the Weather Research and Forecasting (WRF) Model are investigated in a scenario of tropical cyclone intensification. Comparisons of the results from the WRF Model simulations indicate that the variation in the simulated initial rapid intensification of an idealized tropical cyclone is due to the differences between the two cloud microphysics schemes in their representations of pathways to the formation and growth of precipitating hydrometeors. Diagnoses of the source and sink terms of the hydrometeor budget equations indicate that the major differences in the production of hydrometeors between the schemes are in the spectral definition of individual hydrometeor categories and spectrum-dependent microphysical processes, such as accretion growth and sedimentation. These differences lead to different horizontally averaged vertical profiles of net latent heating rate associated with significantly different horizontally averaged vertical distributions and production rates of hydrometeors in the simulated clouds. Results from this study also highlight the possibility that the advantage of double-moment formulations can be overshadowed by the uncertainties in the spectral definition of individual hydrometeor categories and spectrum-dependent microphysical processes.

Denotes Open Access content.

Corresponding author address: Jian-Wen Bao, NOAA/ESRL, 325 Broadway, Boulder, CO 80305. E-mail: jian-wen.bao@noaa.gov

Abstract

Pathways to the production of precipitation in two cloud microphysics schemes available in the Weather Research and Forecasting (WRF) Model are investigated in a scenario of tropical cyclone intensification. Comparisons of the results from the WRF Model simulations indicate that the variation in the simulated initial rapid intensification of an idealized tropical cyclone is due to the differences between the two cloud microphysics schemes in their representations of pathways to the formation and growth of precipitating hydrometeors. Diagnoses of the source and sink terms of the hydrometeor budget equations indicate that the major differences in the production of hydrometeors between the schemes are in the spectral definition of individual hydrometeor categories and spectrum-dependent microphysical processes, such as accretion growth and sedimentation. These differences lead to different horizontally averaged vertical profiles of net latent heating rate associated with significantly different horizontally averaged vertical distributions and production rates of hydrometeors in the simulated clouds. Results from this study also highlight the possibility that the advantage of double-moment formulations can be overshadowed by the uncertainties in the spectral definition of individual hydrometeor categories and spectrum-dependent microphysical processes.

Denotes Open Access content.

Corresponding author address: Jian-Wen Bao, NOAA/ESRL, 325 Broadway, Boulder, CO 80305. E-mail: jian-wen.bao@noaa.gov
Save