• Barnston, A. G., and M. K. Tippett, 2013: Predictions of Niño-3. 4 SST in CFSv1 and CFSv2: A diagnostic comparison. Climate Dyn., 41, 16151633, doi:10.1007/s00382-013-1845-2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, H. M. van den Dool, and D. A. Unger, 2015: Toward an improved multimodel ENSO prediction. J. Appl. Meteor. Climatol., 54, 15791595, doi:10.1175/JAMC-D-14-0188.1.

    • Search Google Scholar
    • Export Citation
  • Bartman, A. G., W. A. Landman, and C. J. D. W. Rautenbach, 2003: Recalibration of general circulation model output to austral summer rainfall over southern Africa. Int. J. Climatol., 23, 14071419, doi:10.1002/joc.954.

    • Search Google Scholar
    • Export Citation
  • Cheng, J., J. Yang, Y. Zhou, and Y. Cui, 2006: Flexible background mixture models for foreground segmentation. Image Vis. Comput., 24, 473482, doi:10.1016/j.imavis.2006.01.018.

    • Search Google Scholar
    • Export Citation
  • Clark, M., S. Gangopadhyay, L. Hay, B. Rajagopalan, and R. Wilby, 2004: The Schaake shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeor., 5, 243262, doi:10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coelho, C., S. Pezzulli, M. Balmaseda, F. Doblas-Reyes, and D. Stephenson, 2004: Forecast calibration and combination: A simple Bayesian approach for ENSO. J. Climate, 17, 15041516, doi:10.1175/1520-0442(2004)017<1504:FCACAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeChant, C. M., and H. Moradkhani, 2014: Toward a reliable prediction of seasonal forecast uncertainty: Addressing model and initial condition uncertainty with ensemble data assimilation and sequential Bayesian combination. J. Hydrol., 519D, 29672977, doi:10.1016/j.jhydrol.2014.05.045.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., S. Sorooshian, and V. Gupta, 1992: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res., 28, 10151031, doi:10.1029/91WR02985.

    • Search Google Scholar
    • Export Citation
  • Dutton, J. A., R. P. James, and J. D. Ross, 2013: Calibration and combination of dynamical seasonal forecasts to enhance the value of predicted probabilities for managing risk. Climate Dyn., 40, 30893105, doi:10.1007/s00382-013-1764-2.

    • Search Google Scholar
    • Export Citation
  • Everingham, Y. L., A. J. Clarke, and S. Van Gorder, 2008: Long lead rainfall forecasts for the Australian sugar industry. Int. J. Climatol., 28, 111117, doi:10.1002/joc.1513.

    • Search Google Scholar
    • Export Citation
  • Everingham, Y. L., N. E. Stoeckl, J. Cusack, and J. A. Osborne, 2012: Quantifying the benefits of a long-lead ENSO prediction model to enhance harvest management—A case study for the Herbert sugarcane growing region, Australia. Int. J. Climatol., 32, 10691076, doi:10.1002/joc.2333.

    • Search Google Scholar
    • Export Citation
  • Feddersen, H., A. Navarra, and M. N. Ward, 1999: Reduction of model systematic error by statistical correction for dynamical seasonal predictions. J. Climate, 12, 19741989, doi:10.1175/1520-0442(1999)012<1974:ROMSEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, doi:10.1175/MWR2904.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. W., and A. V. Ines, 2005: Stochastic disaggregation of monthly rainfall data for crop simulation studies. Agric. For. Meteor., 131, 233246, doi:10.1016/j.agrformet.2005.06.006.

    • Search Google Scholar
    • Export Citation
  • Hawthorne, S., Q. Wang, A. Schepen, and D. Robertson, 2013: Effective use of general circulation model outputs for forecasting monthly rainfalls to long lead times. Water Resour. Res., 49, 54275436, doi:10.1002/wrcr.20453.

    • Search Google Scholar
    • Export Citation
  • Herr, H. D., and R. Krzysztofowicz, 2015: Ensemble Bayesian forecasting system Part I: Theory and algorithms. J. Hydrol., 524, 789802, doi:10.1016/j.jhydrol.2014.11.072.

    • Search Google Scholar
    • Export Citation
  • Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky, 1999: Bayesian model averaging: A tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors). Stat. Sci., 14, 382401, doi:10.1214/ss/1009212519.

    • Search Google Scholar
    • Export Citation
  • Hsu, W.-R., and A. H. Murphy, 1986: The attributes diagram: A geometrical framework for assessing the quality of probability forecasts. Int. J. Forecasting, 2, 285293, doi:10.1016/0169-2070(86)90048-8.

    • Search Google Scholar
    • Export Citation
  • Hudson, D., O. Alves, H. H. Hendon, and G. Wang, 2011: The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Climate Dyn., 36, 11551171, doi:10.1007/s00382-010-0763-9.

    • Search Google Scholar
    • Export Citation
  • Hudson, D., A. G. Marshall, Y. Yin, O. Alves, and H. H. Hendon, 2013: Improving intraseasonal prediction with a new ensemble generation strategy. Mon. Wea. Rev., 141, 44294449, doi:10.1175/MWR-D-13-00059.1.

    • Search Google Scholar
    • Export Citation
  • Jo, S., Y. Lim, J. Lee, H.-S. Kang, and H.-S. Oh, 2012: Bayesian regression model for seasonal forecast of precipitation over Korea. Asia-Pac. J. Atmos. Sci., 48, 205212, doi:10.1007/s13143-012-0021-7.

    • Search Google Scholar
    • Export Citation
  • Jones, D. A., W. Wang, and R. Fawcett, 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Oceanogr. J., 58, 233248.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere winter. Climate Dyn., 39, 29572973, doi:10.1007/s00382-012-1364-6.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American Multimodel Ensemble: Phase-1 Seasonal-to-Interannual Prediction; Phase-2 toward Developing Intraseasonal Prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Langford, S., and H. H. Hendon, 2013: Improving reliability of coupled model forecasts of Australian seasonal rainfall. Mon. Wea. Rev., 141, 728741, doi:10.1175/MWR-D-11-00333.1.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., H. H. Hendon, D. Hudson, G. Wang, and O. Alves, 2009: Dynamical forecast of inter–El Nino variations of tropical SST and Australian spring rainfall. Mon. Wea. Rev., 137, 37963810, doi:10.1175/2009MWR2904.1.

    • Search Google Scholar
    • Export Citation
  • Lim, E.-P., H. H. Hendon, D. L. T. Anderson, A. Charles, and O. Alves, 2011: Dynamical, statistical–dynamical, and multimodel ensemble forecasts of Australian spring season rainfall. Mon. Wea. Rev., 139, 958975, doi:10.1175/2010MWR3399.1.

    • Search Google Scholar
    • Export Citation
  • Luo, L., E. F. Wood, and M. Pan, 2007: Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions. J. Geophys. Res., 112, D10102, doi:10.1029/2006JD007655.

    • Search Google Scholar
    • Export Citation
  • Marshall, A., D. Hudson, M. Wheeler, O. Alves, H. Hendon, M. Pook, and J. Risbey, 2014: Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Climate Dyn., 43, 19151937, doi:10.1007/s00382-013-2016-1.

    • Search Google Scholar
    • Export Citation
  • Matheson, J. E., and R. L. Winkler, 1976: Scoring rules for continuous probability distributions. Manage. Sci., 22, 10871096, doi:10.1287/mnsc.22.10.1087.

    • Search Google Scholar
    • Export Citation
  • Peng, Z., Q. Wang, J. C. Bennett, P. Pokhrel, and Z. Wang, 2014: Seasonal precipitation forecasts over China using monthly large-scale oceanic-atmospheric indices. J. Hydrol., 519, 792802, doi:10.1016/j.jhydrol.2014.08.012.

    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, doi:10.1175/MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, doi:10.1175/2009MWR2861.1.

    • Search Google Scholar
    • Export Citation
  • Schepen, A., and Q. Wang, 2013: Toward accurate and reliable forecasts of Australian seasonal rainfall by calibrating and merging multiple coupled GCMS. Mon. Wea. Rev., 141, 45544563, doi:10.1175/MWR-D-12-00253.1.

    • Search Google Scholar
    • Export Citation
  • Schepen, A., and Q. Wang, 2014: Ensemble forecasts of monthly catchment rainfall out to long lead times by post-processing coupled general circulation model output. J. Hydrol., 519, 29202931, doi:10.1016/j.jhydrol.2014.03.017.

    • Search Google Scholar
    • Export Citation
  • Schepen, A., and Q. Wang, 2015: Model averaging methods to merge operational statistical and dynamic seasonal streamflow forecasts in Australia. Water Resour. Res., 51, 17971812, doi:10.1002/2014WR016163.

    • Search Google Scholar
    • Export Citation
  • Schepen, A., Q. Wang, and D. E. Robertson, 2012: Combining the strengths of statistical and dynamical modeling approaches for forecasting Australian seasonal rainfall. J. Geophys. Res., 117, D20107, doi:10.1029/2012JD018011.

    • Search Google Scholar
    • Export Citation
  • Schepen, A., Q. Wang, and D. E. Robertson, 2014: Seasonal forecasts of Australian rainfall through calibration and bridging of coupled GCM outputs. Mon. Wea. Rev., 142, 17581770, doi:10.1175/MWR-D-13-00248.1.

    • Search Google Scholar
    • Export Citation
  • Shi, L., H. H. Hendon, O. Alves, J.-J. Luo, M. Balmaseda, and D. Anderson, 2012: How predictable is the Indian Ocean dipole? Mon. Wea. Rev., 140, 38673884, doi:10.1175/MWR-D-12-00001.1.

    • Search Google Scholar
    • Export Citation
  • Shinozaki, T., S. Furui, and T. Kawahara, 2010: Gaussian mixture optimization based on efficient cross-validation. IEEE J. Sel. Topics Signal Process., 4, 540547, doi:10.1109/JSTSP.2010.2048235.

    • Search Google Scholar
    • Export Citation
  • Troccoli, A., 2010: Seasonal climate forecasting. Meteor. Appl., 17, 251268.

  • Wang, G., D. Hudson, Y. Ying, O. Alves, H. Hendon, S. Langford, G. Liu, and F. Tseitkin, 2011: POAMA-2 SST skill assessment and beyond. CAWCR Res. Lett., 6, 4046.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., and D. Robertson, 2011: Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences. Water Resour. Res., 47, W02546, doi:10.1029/2010WR009333.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., D. Robertson, and F. Chiew, 2009: A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour. Res., 45, W05407, doi:10.1029/2008WR007355.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., A. Schepen, and D. E. Robertson, 2012: Merging seasonal rainfall forecasts from multiple statistical models through Bayesian model averaging. J. Climate, 25, 55245537, doi:10.1175/JCLI-D-11-00386.1.

    • Search Google Scholar
    • Export Citation
  • White, C. J., D. Hudson, and O. Alves, 2014: ENSO, the IOD and the intraseasonal prediction of heat extremes across Australia using POAMA-2. Climate Dyn., 43, 17911810, doi:10.1007/s00382-013-2007-2.

    • Search Google Scholar
    • Export Citation
  • Yeo, I. K., and R. A. Johnson, 2000: A new family of power transformations to improve normality or symmetry. Biometrika, 87, 954959, doi:10.1093/biomet/87.4.954.

    • Search Google Scholar
    • Export Citation
  • Yin, Y., O. Alves, and P. R. Oke, 2011: An ensemble ocean data assimilation system for seasonal prediction. Mon. Wea. Rev., 139, 786808, doi:10.1175/2010MWR3419.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and H. H. Hendon, 2009: Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Quart. J. Roy. Meteor. Soc., 135, 337352, doi:10.1002/qj.370.

    • Search Google Scholar
    • Export Citation
  • Zivkovic, Z., and F. van der Heijden, 2004: Recursive unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell., 26, 651656.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 409 222 136
PDF Downloads 233 74 6

Calibration, Bridging, and Merging to Improve GCM Seasonal Temperature Forecasts in Australia

Andrew SchepenCSIRO Land and Water, Dutton Park, Queensland, Australia

Search for other papers by Andrew Schepen in
Current site
Google Scholar
PubMed
Close
,
Q. J. WangCSIRO Land and Water, Clayton, Victoria, Australia

Search for other papers by Q. J. Wang in
Current site
Google Scholar
PubMed
Close
, and
Yvette EveringhamJames Cook University, Townsville, Queensland, Australia

Search for other papers by Yvette Everingham in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There are a number of challenges that must be overcome if GCM forecasts are to be widely adopted in climate-sensitive industries such as agriculture and water management. GCM outputs are frequently biased relative to observations and their ensembles are unreliable in conveying uncertainty through appropriate spread. The calibration, bridging, and merging (CBaM) method has been shown to be an effective tool for postprocessing GCM rainfall forecasts to improve ensemble forecast attributes. In this study, CBaM is modified and extended to postprocess seasonal minimum and maximum temperature forecasts from the POAMA GCM in Australia. Calibration is postprocessing GCM forecasts using a statistical model. Bridging is producing additional forecasts using statistical models that have other GCM output variables (e.g., SST) as predictors. It is demonstrated that merging calibration and bridging forecasts through CBaM effectively improves the skill of POAMA seasonal minimum and maximum temperature forecasts for Australia. It is demonstrated that CBaM produces bias-corrected forecasts that are reliable in ensemble spread and reduces forecasts to climatology when there is no evidence of forecasting skill. This work will help enable the adoption of GCM forecasts by climate-sensitive industries for quantitative modeling and decision-making.

Corresponding author address: Andrew Schepen, 41 Boggo Rd., Dutton Park, QLD 4102, GPO Box 2583, Brisbane, QLD 4001, Australia. E-mail: andrew.schepen@csiro.au

Abstract

There are a number of challenges that must be overcome if GCM forecasts are to be widely adopted in climate-sensitive industries such as agriculture and water management. GCM outputs are frequently biased relative to observations and their ensembles are unreliable in conveying uncertainty through appropriate spread. The calibration, bridging, and merging (CBaM) method has been shown to be an effective tool for postprocessing GCM rainfall forecasts to improve ensemble forecast attributes. In this study, CBaM is modified and extended to postprocess seasonal minimum and maximum temperature forecasts from the POAMA GCM in Australia. Calibration is postprocessing GCM forecasts using a statistical model. Bridging is producing additional forecasts using statistical models that have other GCM output variables (e.g., SST) as predictors. It is demonstrated that merging calibration and bridging forecasts through CBaM effectively improves the skill of POAMA seasonal minimum and maximum temperature forecasts for Australia. It is demonstrated that CBaM produces bias-corrected forecasts that are reliable in ensemble spread and reduces forecasts to climatology when there is no evidence of forecasting skill. This work will help enable the adoption of GCM forecasts by climate-sensitive industries for quantitative modeling and decision-making.

Corresponding author address: Andrew Schepen, 41 Boggo Rd., Dutton Park, QLD 4102, GPO Box 2583, Brisbane, QLD 4001, Australia. E-mail: andrew.schepen@csiro.au
Save