• Aksoy, A., D. C. David, and C. Snyder, 2010: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range ensemble forecasts. Mon. Wea. Rev., 138, 12731292, doi:10.1175/2009MWR3086.1.

    • Search Google Scholar
    • Export Citation
  • Aonashi, K., and H. Eito, 2011: Displaced ensemble variational assimilation method to incorporate microwave imager brightness temperatures into a cloud-resolving model. J. Meteor. Soc. Japan, 89, 175194, doi:10.2151/jmsj.2011-301.

    • Search Google Scholar
    • Export Citation
  • Aonashi, K., and Coauthors, 2009: GSMaP passive, microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119136, doi:10.2151/jmsj.87A.119.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., S. Tanelli, K. Mroz, and F. Tridon, 2015: Multiple scattering in observations of the GPM dual-frequency precipitation radar: Evidence and impact on retrievals. J. Geophys. Res. Atmos., 120, 40904101, doi:10.1002/2014JD022866.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. J. Geer, P. Lopez, and D. Salmond, 2010: Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Quart. J. Roy. Meteor. Soc., 136, 18681885, doi:10.1002/qj.659.

    • Search Google Scholar
    • Export Citation
  • Benedetti, A., P. Lopez, P. Bauer, and E. Moreau, 2005: Experimental use of TRMM precipitation radar observations in 1D+4D-Var assimilation. Quart. J. Roy. Meteor. Soc., 131, 24732495, doi:10.1256/qj.04.89.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2012: Evaluation of a spatial/spectral covariance localization approach for atmospheric data assimilation. Mon. Wea. Rev., 140, 617636, doi:10.1175/MWR-D-10-05052.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343, doi:10.1256/qj.05.137.

  • Eito, H., and K. Aonashi, 2009: Verification of hydrometeor properties simulated by a cloud-resolving model using a passive microwave satellite and ground-based radar observations for a rainfall system associated with the Baiu front. J. Meteor. Soc. Japan, 87A, 425446, doi:10.2151/jmsj.87A.425.

    • Search Google Scholar
    • Export Citation
  • Geer, A. J., P. Bauer, and P. Lopez, 2010: Direct 4D-Var assimilation of all-sky radiances. Part II: Assessment. Quart. J. Roy. Meteor. Soc., 136, 18861905, doi:10.1002/qj.681.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., M. Satoh, Y. Hagihara, T. Kubota, T. Matsui, T. Nasuno, and H. Okamoto, 2013: Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO. J. Geophys. Res. Atmos., 118, 72737292, doi:10.1002/jgrd.50564.

    • Search Google Scholar
    • Export Citation
  • Hou, A. H., and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., and K. Saito, 1991: Description of a non-hydrostatic model developed at the Forecast Research Department of the MRI. MRI Tech. Rep. 28, 238 pp.

  • Ikuta, Y., and Y. Honda, 2011: Development of 1D+4DVAR data assimilation of radar reflectivity in JNoVA. CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell., 41, 01.0901.10.

    • Search Google Scholar
    • Export Citation
  • Janisková, M., 2015: Assimilation of cloud information from space-borne radar and lidar: Experimental study using a 1D+4D-Var technique. Quart. J. Roy. Meteor. Soc., 141, 27082725, doi:10.1002/qj.2558.

    • Search Google Scholar
    • Export Citation
  • Janisková, M., P. Lopez, and P. Bauer, 2012: Experimental 1D+4D-Var assimilation of CloudSat observations. Quart. J. Roy. Meteor. Soc., 138, 11961220, doi:10.1002/qj.988.

    • Search Google Scholar
    • Export Citation
  • JMA, 2013: Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO technical progress report on the global data processing and forecast system (GDPFS) and numerical weather prediction (NWP), 9–40.

  • Kain, J., and J. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kawabata, T., T. Kuroda, H. Seko, and K. Saito, 2011: A cloud-resolving 4DVAR assimilation experiment for a local heavy rainfall event in the Tokyo metropolitan area. Mon. Wea. Rev., 139, 19111931, doi:10.1175/2011MWR3428.1.

    • Search Google Scholar
    • Export Citation
  • Kotsuki, S., K. Terasaki, and T. Miyoshi, 2014: GPM/DPR precipitation compared with a 3.5-km-resolution NICAM simulation. SOLA, 10, 204209, doi:10.2151/sola.2014-043.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satelliteborne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, doi:10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2014: Evaluation of precipitation estimates by at-launch codes of GPM/DPR algorithms using synthetic data from TRMM/PR observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 39313944, doi:10.1109/JSTARS.2014.2320960.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., T. Iguchi, M. Kojima, L. Liao, T. Masaki, H. Hanado, and R. Oki, 2016: A statistical method for reducing sidelobe clutter for the Ku-band precipitation radar on board the GPM Core Observatory. J. Atmos. Oceanic Technol., doi:10.1175/JTECH-D-15-0202.1, in press.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. H., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2004: Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J. Atmos. Sci., 61, 24412456, doi:10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martinet, P., N. Fourrié, V. Guidard, F. Rabier, T. Montmerle, and P. Brunel, 2013: Towards the use of microphysical variables for the assimilation of cloud-affected infrared radiances. Quart. J. Roy. Meteor. Soc., 139, 14021416, doi:10.1002/qj.2046.

    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and C. D. Kummerow, 2005: Combined radar and radiometer analysis of precipitation profiles for a parametric retrieval algorithm. J. Atmos. Oceanic Technol., 22, 909929, doi:10.1175/JTECH1751.1.

    • Search Google Scholar
    • Export Citation
  • McNally, A. P., 2009: The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 135, 12141229, doi:10.1002/qj.426.

    • Search Google Scholar
    • Export Citation
  • Okamoto, K., 2013: Assimilation of overcast cloudy infrared radiances of the geostationary MTSAT-1R imager. Quart. J. Roy. Meteor. Soc., 139, 715730, doi:10.1002/qj.1994.

    • Search Google Scholar
    • Export Citation
  • Okamoto, K., M. Kazumori, and H. Owada, 2005: The assimilation of ATOVS radiances in the JMA global analysis system. J. Meteor. Soc. Japan, 83, 201217, doi:10.2151/jmsj.83.201.

    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic model. Mon. Wea. Rev., 134, 12661298, doi:10.1175/MWR3120.1.

  • Sawada, M., and T. Iwasaki, 2007: Impacts of ice phase processes on tropical cyclone development. J. Meteor. Soc. Japan, 85, 479494, doi:10.2151/jmsj.85.479.

    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, and T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement Mission’s single/dual-frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 52395251, doi:10.1109/TGRS.2012.2231686.

    • Search Google Scholar
    • Export Citation
  • Stengel, M., M. Lindskog, P. Undén, and N. Gustafsson, 2013: The impact of cloud-affected IR radiances on forecast accuracy of a limited-area NWP model. Quart. J. Roy. Meteor. Soc., 139, 20812096, doi:10.1002/qj.2102.

    • Search Google Scholar
    • Export Citation
  • Toyoshima, K., H. Masunaga, and F. A. Furuzawa, 2015: Early evaluation of Ku- and Ka-band sensitivities for the Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR). SOLA, 11, 1417, doi:10.2151/sola.2015-004.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137151, doi:10.2151/jmsj.87A.137.

    • Search Google Scholar
    • Export Citation
  • Wattrelot, E., O. Caumont, and J.-F. Mahfouf, 2014: Operational implementation of the 1D+3D-Var assimilation method of radar reflectivity data in the AROME model. Mon. Wea. Rev., 142, 18521873, doi:10.1175/MWR-D-13-00230.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and B. Wang, 2001: Effects of convective heating on movement and vertical coupling of tropical cyclones: A numerical study. J. Atmos. Sci., 58, 36393649, doi:10.1175/1520-0469(2001)058<3639:EOCHOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 320 99 17
PDF Downloads 295 81 11

Experimental Assimilation of the GPM Core Observatory DPR Reflectivity Profiles for Typhoon Halong (2014)

Kozo OkamotoMeteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan

Search for other papers by Kozo Okamoto in
Current site
Google Scholar
PubMed
Close
,
Kazumasa AonashiMeteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan

Search for other papers by Kazumasa Aonashi in
Current site
Google Scholar
PubMed
Close
,
Takuji KubotaEarth Observation Research Center, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan

Search for other papers by Takuji Kubota in
Current site
Google Scholar
PubMed
Close
, and
Tomoko TashimaRemote Sensing Technology Center of Japan, Tsukuba, Ibaraki, Japan

Search for other papers by Tomoko Tashima in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Space-based precipitation radar data have been underused in data assimilation studies and operations despite their valuable information on vertically resolved hydrometeor profiles around the globe. The authors developed direct assimilation of reflectivities (Ze) from the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory to improve mesoscale predictions. Based on comparisons with Ze observations, this cloud resolving model mostly reproduced Ze but produced overestimations of Ze induced by excessive snow with large diameter particles. With an ensemble-based variational scheme and preprocessing steps to properly treat reflectivity observations including conservative quality control and superobbing procedures, the authors assimilated DPR Ze and/or rain-affected radiances of GPM Microwave Imager (GMI) for the case of Typhoon Halong in July 2014. With the vertically resolving capability of DPR, the authors effectively selected Ze observations most suited to data assimilation, for example, by removing Ze above the melting layer to avoid contamination due to model bias. While the GMI radiance had large impacts on various control variables, the DPR made a fine delicate analysis of the rain mixing ratio and updraft. This difference arose from the observation characteristics (coverage width and spatial resolution), sensitivities represented in the observation operators, and structures of the background error covariance. Because the DPR assimilation corrected excessive increases in rain and clouds due to the radiance assimilation, the combined use of DPR and GMI generated more accurate analysis and forecast than separate use of them with respect to the agreement of observations and tropical cyclone position errors.

Corresponding author address: Kozo Okamoto, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: kokamoto@mri-jma.go.jp

Abstract

Space-based precipitation radar data have been underused in data assimilation studies and operations despite their valuable information on vertically resolved hydrometeor profiles around the globe. The authors developed direct assimilation of reflectivities (Ze) from the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) Core Observatory to improve mesoscale predictions. Based on comparisons with Ze observations, this cloud resolving model mostly reproduced Ze but produced overestimations of Ze induced by excessive snow with large diameter particles. With an ensemble-based variational scheme and preprocessing steps to properly treat reflectivity observations including conservative quality control and superobbing procedures, the authors assimilated DPR Ze and/or rain-affected radiances of GPM Microwave Imager (GMI) for the case of Typhoon Halong in July 2014. With the vertically resolving capability of DPR, the authors effectively selected Ze observations most suited to data assimilation, for example, by removing Ze above the melting layer to avoid contamination due to model bias. While the GMI radiance had large impacts on various control variables, the DPR made a fine delicate analysis of the rain mixing ratio and updraft. This difference arose from the observation characteristics (coverage width and spatial resolution), sensitivities represented in the observation operators, and structures of the background error covariance. Because the DPR assimilation corrected excessive increases in rain and clouds due to the radiance assimilation, the combined use of DPR and GMI generated more accurate analysis and forecast than separate use of them with respect to the agreement of observations and tropical cyclone position errors.

Corresponding author address: Kozo Okamoto, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: kokamoto@mri-jma.go.jp
Save