• Barnes, W. L., T. S. Pagano, and V. V. Salomonson, 1998: Prelaunch characteristics of the moderate resolution imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36, 10881100, doi:10.1109/36.700993.

    • Search Google Scholar
    • Export Citation
  • Bender, F., V. Ramanathan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, doi:10.1007/s00382-011-1065-6.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and G. W. Petty, 2001: The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J. Appl. Meteor., 40, 345364, doi:10.1175/1520-0450(2001)040<0345:TSOMRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and P. Bauer, 2003: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles. Radio Sci., 38, 8075, doi:10.1029/2002RS002626.

    • Search Google Scholar
    • Export Citation
  • Berry, G., M. J. Reeder, and C. Jakob, 2011: A global climatology of atmospheric fronts. Geophys. Res. Lett., 38, L04809, doi:10.1029/2010GL046451.

    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., S. E. Belcher, and R. S. Plant, 2011: Moisture transport in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 137, 360373, doi:10.1002/qj.783.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 2341, doi:10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E.O. Holopainen, Eds., Amer. Meteor. Soc., 129–153.

  • Browning, K. A., M. E. Hardman, T. W. Harrold, and C. W. Pardoe, 1973: Structure of rainbands within a mid-latitude depression. Quart. J. Roy. Meteor. Soc., 99, 215231, doi:10.1002/qj.49709942002.

    • Search Google Scholar
    • Export Citation
  • Businger, S., T. M. Graziano, M. L. Kaplan, and R. A. Rozumalski, 2005: Cold-air cyclogenesis along the Gulf-Stream front: Investigation of diabatic impacts on cyclone development, frontal structure, and track. Meteor. Atmos. Phys., 88, 6590, doi:10.1007/s00703-003-0050-y.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, doi:10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., C. Jakob, G. Berry, and N. Nicholls, 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett., 39, L10805, doi:10.1029/2012GL051736.

    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., S. L. Gray, and J. Methven, 2013: Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Quart. J. Roy. Meteor. Soc., 139, 12701282, doi:10.1002/qj.2037.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., S. Raman, and L. J. Pietrafesa, 1993: The effect of Gulf Stream-induced baroclinicity on U.S. East Coast winter cyclones. Mon. Wea. Rev., 121, 421430, doi:10.1175/1520-0493(1993)121<0421:TEOGSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crosier, J., and Coauthors, 2014: Microphysical properties of cold frontal rainbands. Quart. J. Roy. Meteor. Soc., 140, 12571268, doi:10.1002/qj.2206.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: A potential vorticity analysis of the importance of initial structure and condensational heating in observed cyclogenesis. Mon. Wea. Rev., 120, 24092428, doi:10.1175/1520-0493(1992)120<2409:APVDOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dearden, C., P. J. Connolly, G. Lloyd, J. Crosier, K. N. Bower, T. W. Choularton, and G. Vaughan, 2014: Diabatic heating and cooling rates derived from in situ microphysics measurements: A case study of a wintertime U.K. cold front. Mon. Wea. Rev., 142, 31003125, doi:10.1175/MWR-D-14-00048.1.

    • Search Google Scholar
    • Export Citation
  • Dearden, C., G. Vaughan, T. Tsai, and J. Chen, 2016: Exploring the diabatic role of ice microphysical processes in two North Atlantic summer cyclones. Mon. Wea. Rev., 144, 12491272, doi:10.1175/MWR-D-15-0253.1.

    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17, 218237, doi:10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, M. S., D. Keyser, L. F. Bosart, and G. M. Lackmann, 1994: A satellite-derived classification scheme for rapid maritime cyclogenesis. Mon. Wea. Rev., 122, 13811416, doi:10.1175/1520-0493(1994)122<1381:ASDCSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, doi:10.1175/JCLI3998.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. Gettelman, R. B. Neale, R. Wood, P. J. Rasch, and H. Morrison, 2008: Cyclone compositing to constrain climate model behavior using satellite observations. J. Climate, 21, 58875903, doi:10.1175/2008JCLI2235.1.

    • Search Google Scholar
    • Export Citation
  • Flaounas, E., K. Lagouvardos, V. Kotroni, C. Claud, J. Delanoë, C. Flamant, E. Madonna, and H. Wernli, 2016: Processes leading to heavy precipitation associated with two Mediterranean cyclones observed during the HyMeX SOP1. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2618, in press.

    • Search Google Scholar
    • Export Citation
  • Govekar, P. D., C. Jakob, M. J. Reeder, and J. Haynes, 2011: The three-dimensional distribution of clouds around Southern Hemisphere extratropical cyclones. Geophys. Res. Lett., 38, L21805, doi:10.1029/2011GL049091.

    • Search Google Scholar
    • Export Citation
  • Govekar, P. D., C. Jakob, and J. L. Catto, 2014: The relationship between clouds and dynamics in Southern Hemisphere extratropical cyclones in the real world and a climate model. J. Geophys. Res. Atmos., 119, 66096628, doi:10.1002/2013JD020699.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, doi:10.1002/qj.891.

    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99, 232251, doi:10.1002/qj.49709942003.

    • Search Google Scholar
    • Export Citation
  • Hawcroft, M., L. Shaffrey, K. Hodges, and H. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, doi:10.1029/2012GL053866.

    • Search Google Scholar
    • Export Citation
  • Heideman, K. F., and J. M. Fritsch, 1988: Forcing mechanisms and other characteristics of significant summertime precipitation. Wea. Forecasting, 3, 115130, doi:10.1175/1520-0434(1988)003<0115:FMAOCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Igel, A. L., and S. C. van den Heever, 2014: The role of latent heating in warm frontogenesis. Quart. J. Roy. Meteor. Soc., 140, 139150, doi:10.1002/qj.2118.

    • Search Google Scholar
    • Export Citation
  • Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J. Roy. Meteor. Soc., 138, 407418, doi:10.1002/qj.934.

    • Search Google Scholar
    • Export Citation
  • Kawanishi, T., and Coauthors, 2003: The Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens., 41, 184194, doi:10.1109/TGRS.2002.808331.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 442458, doi:10.1109/TGRS.2002.808226.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and C. Jakob, 1999: Sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531, doi:10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., R. Bennartz, T. J. Greenwald, Y. Chen, and F. Z. Weng, 2010: Uncertainties in microwave properties of frozen precipitation implications for remote sensing and data assimilation. J. Atmos. Sci., 67, 34713487, doi:10.1175/2010JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., M. A. Shapiro, and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119, 368384, doi:10.1175/1520-0493(1991)119<0368:TIBBAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. W. Crane, 1995: A satellite view of the synoptic-scale organization of cloud properties in midlatitude and tropical circulation systems. Mon. Wea. Rev., 123, 19842006, doi:10.1175/1520-0493(1995)123<1984:ASVOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. W. Crane, 1997: Comparing satellite and surface observations of cloud patterns in synoptic-scale circulation systems. Mon. Wea. Rev., 125, 31723189, doi:10.1175/1520-0493(1997)125<3172:CSASOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lloyd, G., C. Dearden, T. W. Choularton, J. Crosier, and K. N. Bower, 2014: Observations of the origin and distribution of ice in cold, warm, and occluded frontal systems during the DIAMET campaign. Mon. Wea. Rev., 142, 42304255, doi:10.1175/MWR-D-13-00396.1.

    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, doi:10.1175/JCLI-D-12-00720.1.

    • Search Google Scholar
    • Export Citation
  • Martinez-Alvarado, O., H. Joos, J. Chagnon, M. Boettcher, S. Gray, B. Plant, J. Methven, and H. Wernli, 2014: The dichotomous structure of the warm conveyor belt. Quart. J. Roy. Meteor. Soc., 140, 18091824, doi:10.1002/qj.2276.

    • Search Google Scholar
    • Export Citation
  • Massacand, A. C., H. Wernli, and H. C. Davies, 2001: Influence of upstream diabatic heating upon an alpine event of heavy precipitation. Mon. Wea. Rev., 129, 28222828, doi:10.1175/1520-0493(2001)129<2822:IOUDHU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Methven, J., 2015: Potential vorticity in warm conveyor belt outflow. Quart. J. Roy. Meteor. Soc., 141, 10651071, doi:10.1002/qj.2393.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., A. D. Del Genio, and M. Bauer, 2006: Observational constraints on cloud thermodynamic phase in midlatitude storms. J. Climate, 19, 52735288, doi:10.1175/JCLI3919.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., A. D. Del Genio, M. Bauer, and W. Kovari, 2010: Cloud vertical distribution across warm and cold fronts in CloudSat–CALIPSO data and a general circulation model. J. Climate, 23, 33973415, doi:10.1175/2010JCLI3282.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., D. J. Posselt, and S. C. van den Heever, 2012: Observational analysis of cloud and precipitation in midlatitude cyclones: Northern versus Southern Hemisphere warm fronts. J. Climate, 25, 51355151, doi:10.1175/JCLI-D-11-00569.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and A. D. Del Genio, 2014: Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. J. Climate, 27, 21092124, doi:10.1175/JCLI-D-13-00432.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., D. J. Posselt, and S. C. van den Heever, 2015: A CloudSat–CALIPSO view of cloud and precipitation properties across cold fronts over the global oceans. J. Climate, 28, 67436762, doi:10.1175/JCLI-D-15-0052.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I: Frontal-cyclone evolution and thermodynamic air–sea interaction. Mon. Wea. Rev., 121, 21532176, doi:10.1175/1520-0493(1993)121<2153:TLCOAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., 2003: Aqua: An earth-observing satellite mission examine water and other climate variables. IEEE Trans. Geosci. Remote Sens., 41, 173183, doi:10.1109/TGRS.2002.808319.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1994: Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part 1: Theoretical characteristics of normalized polarization and scattering indexes. Meteor. Atmos. Phys., 54, 7999, doi:10.1007/BF01030053.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 2740, doi:10.1175/JCLI-D-13-00223.1.

    • Search Google Scholar
    • Export Citation
  • Pomroy, H. R., and A. J. Thorpe, 2000: The evolution and dynamical role of reduced upper-tropospheric potential vorticity in intensive observing period one of FASTEX. Mon. Wea. Rev., 128, 18171834, doi:10.1175/1520-0493(2000)128<1817:TEADRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and J. E. Martin, 2004: The effect of latent heat release on the evolution of a warm occluded thermal structure. Mon. Wea. Rev., 132, 578599, doi:10.1175/1520-0493(2004)132<0578:TEOLHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., G. L. Stephens, and M. Miller, 2008: CloudSat: Adding a new dimension to a classical view of extratropical cyclones. Bull. Amer. Meteor. Soc., 89, 599609, doi:10.1175/BAMS-89-5-599.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., A. J. Simmons, M. D. Albright, and P. Unden, 1988: The role of latent heat release in explosive cyclogenesis: Three examples based on ECMWF operational forecasts. Wea. Forecasting, 3, 217229, doi:10.1175/1520-0434(1988)003<0217:TROLHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., and G. M. Lackmann, 2004: An investigation of the influence of latent heat release on cold-frontal motion. Mon. Wea. Rev., 132, 28642881, doi:10.1175/MWR2827.1.

    • Search Google Scholar
    • Export Citation
  • Ruf, C., and Coauthors, 2016: New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Amer. Meteor. Soc., 97, 385395, doi:10.1175/BAMS-D-14-00218.1.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, doi:10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., and H. Wernli, 2014: The linkage between the warm and the cold conveyor belts in an idealized extratropical cyclone. J. Atmos. Sci., 71, 14431459, doi:10.1175/JAS-D-13-0177.1.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., H. Wernli, and L. Papritz, 2013: Warm conveyor belt in idealized moist baroclinic wave simulation. J. Atmos. Sci., 70, 627652, doi:10.1175/JAS-D-12-0147.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and D. Keyser, 1990: Fronts, jet streams, and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C.W. Newton and E. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: Cloudsat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity–based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849874, doi:10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., 2001: A 1-year Lagrangian “climatology” of airstreams in the Northern Hemisphere troposphere and lowermost stratosphere. J. Geophys. Res., 106, 72637279, doi:10.1029/2000JD900570.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and W. B. Rossow, 2006: Climate feedback implied by observed radiation and precipitation changes with midlatitude storm strength and frequency. Geophys. Res. Lett., 33, L02704, doi:10.1029/2005GL024513.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., Y. Zhang, and W. B. Rossow, 2000: Cloud and radiation variations associated with northern midlatitude low and high sea level pressure regimes. J. Climate, 13, 312327, doi:10.1175/1520-0442(2000)013<0312:CARVAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vaughan, G., and Coauthors, 2015: Cloud banding and winds in intense European cyclones: Results from the DIAMET Project. Bull. Amer. Meteor. Soc., 96, 249265, doi:10.1175/BAMS-D-13-00238.1.

    • Search Google Scholar
    • Export Citation
  • Vukovich, F. M., J. W. Dunn, and B. W. Crissman, 1991: Aspects of the evolution of the marine boundary layer during cold-air outbreaks off the southeast coast of the United States. Mon. Wea. Rev., 119, 22522279, doi:10.1175/1520-0493(1991)119<2252:AOTEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weng, F., and N. C. Grody, 2000: Retrieval of ice cloud parameters using microwave imaging radiometers. J. Atmos. Sci., 57, 10691081, doi:10.1175/1520-0469(2000)057<1069:ROICPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. Part II: A detailed case-study. Quart. J. Roy. Meteor. Soc., 123, 16771706, doi:10.1002/qj.49712354211.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467489, doi:10.1002/qj.49712353811.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and C. A. Davis, 1994: Cyclogenesis in a saturated environment. J. Atmos. Sci., 51, 889907, doi:10.1175/1520-0469(1994)051<0889:CIASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 183 80 13
PDF Downloads 88 28 3

A-Train-Based Case Study of Stratiform–Convective Transition within a Warm Conveyor Belt

Juan A. CrespoUniversity of Michigan, Ann Arbor, Michigan

Search for other papers by Juan A. Crespo in
Current site
Google Scholar
PubMed
Close
and
Derek J. PosseltUniversity of Michigan, Ann Arbor, Michigan

Search for other papers by Derek J. Posselt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Clouds are both produced by and interact with the mesoscale and synoptic-scale structure of extratropical cyclones (ETCs) in ways that are still not well understood. Cloud-scale radiative and latent heating modifies the thermal environment, leading to a response in the dynamics that can in turn feed back on cloud distribution and microphysical properties. Key to the structure of ETCs is the warm conveyor belt (WCB); the poleward-ascending airstream that produces the bulk of the clouds and precipitation. This paper examines a long-lived WCB that persisted over the western North Atlantic Ocean in nearly the same location for several days. During this time, the storm was sampled multiple times by NASA’s A-Train satellite constellation, and a clear transition from stratiform to convective clouds was observed. Examination of coincident temperature and water vapor data reveals destabilization of the thermodynamic profile after the cyclone reached maturity. CloudSat radar reflectivity from two sequential overpasses of the warm front depicts a change from stratiform to convective cloud structure, and high-frequency microwave data reveal an increase in the amount of ice hydrometeors. The presence of convection may serve to strengthen the warm frontal trough while slowing the movement of the primary low pressure center. The stratiform–convective transition cannot be detected from passive measurements of cloud-top pressure. The results demonstrate the effectiveness of multivariate satellite observations for examining the outcome of dynamic processes in ETCs, and highlight the need for more rapid temporal profiling in future remote sensing observing systems.

Corresponding author address: Juan A. Crespo, Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143. E-mail: crespoj@umich.edu

Abstract

Clouds are both produced by and interact with the mesoscale and synoptic-scale structure of extratropical cyclones (ETCs) in ways that are still not well understood. Cloud-scale radiative and latent heating modifies the thermal environment, leading to a response in the dynamics that can in turn feed back on cloud distribution and microphysical properties. Key to the structure of ETCs is the warm conveyor belt (WCB); the poleward-ascending airstream that produces the bulk of the clouds and precipitation. This paper examines a long-lived WCB that persisted over the western North Atlantic Ocean in nearly the same location for several days. During this time, the storm was sampled multiple times by NASA’s A-Train satellite constellation, and a clear transition from stratiform to convective clouds was observed. Examination of coincident temperature and water vapor data reveals destabilization of the thermodynamic profile after the cyclone reached maturity. CloudSat radar reflectivity from two sequential overpasses of the warm front depicts a change from stratiform to convective cloud structure, and high-frequency microwave data reveal an increase in the amount of ice hydrometeors. The presence of convection may serve to strengthen the warm frontal trough while slowing the movement of the primary low pressure center. The stratiform–convective transition cannot be detected from passive measurements of cloud-top pressure. The results demonstrate the effectiveness of multivariate satellite observations for examining the outcome of dynamic processes in ETCs, and highlight the need for more rapid temporal profiling in future remote sensing observing systems.

Corresponding author address: Juan A. Crespo, Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143. E-mail: crespoj@umich.edu
Save