Life Cycle Characteristics of MCSs in Middle East China Tracked by Geostationary Satellite and Precipitation Estimates

Yufei Ai Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China, and Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Yufei Ai in
Current site
Google Scholar
PubMed
Close
,
Wanbiao Li Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Wanbiao Li in
Current site
Google Scholar
PubMed
Close
,
Zhiyong Meng Laboratory for Climate and Ocean–Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Zhiyong Meng in
Current site
Google Scholar
PubMed
Close
, and
Jun Li Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Jun Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

By combining high temporal and spatial resolution Multifunctional Transport Satellite-1R (MTSAT-1R) infrared (IR) images and precipitation data from the Climate Prediction Center morphing technique (CMORPH), this study tracked mesoscale convective systems (MCSs) from May to August in 2008 and 2009 in the middle of east China with an automatic tracking algorithm based on an areal overlapping methodology. This methodology is adjusted to include those MCSs with a relative weak intensity before formation. The unique advantage of combining high temporal and spatial resolution geostationary satellite brightness temperature images and the precipitation measurements for tracking MCSs is that the cloud-top height along with the coverage and the precipitation intensity can be well identified. Results showed that the MCSs formed most frequently in the southwest Henan Province and at the border of four provinces—Shandong, Henan, Anhui, and Jiangsu—which is east of the convergence zone near the terrain’s edge. Locations of the highest cloud tops and of the heaviest precipitation rates did not always match. In addition, the MCSs in the study region tended to first reach the maximum precipitation rate, followed soon by the minimum brightness temperature, then the maximum associated precipitation area, and finally the maximum in system area.

Corresponding author address: Wanbiao Li, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, 209 Chengfu Rd., Beijing 100871, China. E-mail: lwb@pku.edu.cn

Abstract

By combining high temporal and spatial resolution Multifunctional Transport Satellite-1R (MTSAT-1R) infrared (IR) images and precipitation data from the Climate Prediction Center morphing technique (CMORPH), this study tracked mesoscale convective systems (MCSs) from May to August in 2008 and 2009 in the middle of east China with an automatic tracking algorithm based on an areal overlapping methodology. This methodology is adjusted to include those MCSs with a relative weak intensity before formation. The unique advantage of combining high temporal and spatial resolution geostationary satellite brightness temperature images and the precipitation measurements for tracking MCSs is that the cloud-top height along with the coverage and the precipitation intensity can be well identified. Results showed that the MCSs formed most frequently in the southwest Henan Province and at the border of four provinces—Shandong, Henan, Anhui, and Jiangsu—which is east of the convergence zone near the terrain’s edge. Locations of the highest cloud tops and of the heaviest precipitation rates did not always match. In addition, the MCSs in the study region tended to first reach the maximum precipitation rate, followed soon by the minimum brightness temperature, then the maximum associated precipitation area, and finally the maximum in system area.

Corresponding author address: Wanbiao Li, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, 209 Chengfu Rd., Beijing 100871, China. E-mail: lwb@pku.edu.cn
Save
  • Barthlott, C., and D. J. Kirshbaum, 2013: Sensitivity of deep convection to terrain forcing over Mediterranean islands. Quart. J. Roy. Meteor. Soc., 139, 17621779, doi:10.1002/qj.2089.

    • Search Google Scholar
    • Export Citation
  • Bei, N., S. Zhao, and S. Gao, 2002: Numerical simulation of a heavy rainfall event in China during July 1998. Meteor. Atmos. Phys., 80, 153164, doi:10.1007/s007030200022.

    • Search Google Scholar
    • Export Citation
  • Chen, H., T. Zhou, R. Yu, and J. Li, 2009: Summer rain fall duration and its diurnal cycle over the U.S. Great Plains. Int. J. Climatol., 29, 15151519, doi:10.1002/joc.1806.

    • Search Google Scholar
    • Export Citation
  • Chen, M., Y. Wang, F. Gao, and X. Xiao, 2012: Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology. J. Geophys. Res., 117, D20115, doi:10.1029/2012JD018158.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-L., 1993: Some synoptic-scale aspects of the surface fronts over southern China during TAMEX. Mon. Wea. Rev., 121, 5064, doi:10.1175/1520-0493(1993)121<0050:SSSAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 11121128, doi:10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, 2012: Life cycle of midlatitude deep convective systems in a Lagrangian framework. J. Geophys. Res., 117, D23201, doi:10.1029/2012JD018362.

    • Search Google Scholar
    • Export Citation
  • Fiolleau, T., and R. Roca, 2013: Composite life cycle of tropical mesoscale convective systems from geostationary and low earth orbit satellite observations: Method and sampling considerations. Quart. J. Roy. Meteor. Soc., 139, 941953, doi:10.1002/qj.2174.

    • Search Google Scholar
    • Export Citation
  • Fujinami, H., and T. Yasunari, 2009: The effects of midlatitude waves over and around the Tibetan Plateau on submonthly variability of the East Asian summer monsoon. Mon. Wea. Rev., 137, 22862304, doi:10.1175/2009MWR2826.1.

    • Search Google Scholar
    • Export Citation
  • Goyens, C., D. Lauwaet, M. Schröder, M. Demuzere, and N. P. Van Lipzig, 2012: Tracking mesoscale convective systems in the Sahel: Relation between cloud parameters and precipitation. Int. J. Climatol., 32, 19211934, doi:10.1002/joc.2407.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1981: A note on the observed diurnal and semidiurnal rainfall variations. J. Geophys. Res., 86, 12 12212 126, doi:10.1029/JC086iC12p12122.

    • Search Google Scholar
    • Export Citation
  • Han, L., S. Fu, L. Zhao, Y. Zheng, H. Wang, and Y. Lin, 2009: 3D convective storm identification, tracking, and forecasting—An enhanced TITAN algorithm. J. Atmos. Oceanic Technol., 26, 719732, doi:10.1175/2008JTECHA1084.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Huang, H.-L., C.-C. Wang, G. T.-J. Chen, and R. E. Carbone, 2010: The role of diurnal solenoidal circulation on propagating rainfall episodes near the eastern Tibetan Plateau. Mon. Wea. Rev., 138, 29752989, doi:10.1175/2010MWR3225.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kolios, S., and H. Feidas, 2013: An automated nowcasting system of mesoscale convective systems for the Mediterranean basin using Meteosat imagery. Part I: System description. Meteor. Appl., 20, 287295, doi:10.1002/met.1282.

    • Search Google Scholar
    • Export Citation
  • Kurino, T., 2012: Future plan and recent activities for the Japanese Follow-on Geostationary Meteorological Satellite Himawari-8/9. Fall Meeting 2012, San Francisco, CA, Amer. Geophys. Union, Abstract IN43E-03.

  • Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405, doi:10.1002/qj.49712353807.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 2000: The large-scale environments of the global populations of mesoscale convective complexes. Mon. Wea. Rev., 128, 27562776, doi:10.1175/1520-0493(2000)128<2756:TLSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K., and S. Yang, 1997: Climatology and interannual variability of the Southeast Asian summer monsoon. Adv. Atmos. Sci., 14, 141162, doi:10.1007/s00376-997-0016-y.

    • Search Google Scholar
    • Export Citation
  • Laurent, H., L. A. T. Machado, C. A. Morales, and L. Durieux, 2002: Characteristics of the Amazonian mesoscale convective systems observed from satellite and radar during the WETAMC/LBA experiment. J. Geophys. Res., 107, 8054, doi:10.1029/2001JD000337.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 34933518, doi:10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., L. Li, A. Dai, and K. E. Kunkel, 2004: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208, doi:10.1029/2004GL021054.

    • Search Google Scholar
    • Export Citation
  • Lin, X., D. A. Randall, and L. D. Fowler, 2000: Diurnal variability of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13, 41594179, doi:10.1175/1520-0442(2000)013<4159:DVOTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., W. Qian, R. Zhang, and D.-L. Zhang, 2013a: Gridded hourly precipitation analysis from high-density rain gauge network over the Yangtze–Huai Rivers basin during the 2007 mei-yu season and comparison with CMORPH. J. Hydrometeor., 14, 12431258, doi:10.1175/JHM-D-12-0133.1.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., H. Wang, R. Zhang, W. Qian, and Z. Luo, 2013b: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over south China and the Yangtze and Huai River basin. J. Climate, 26, 110132, doi:10.1175/JCLI-D-12-00100.1.

    • Search Google Scholar
    • Export Citation
  • Machado, L., W. Rossow, R. Guedes, and A. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, doi:10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Meoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., and H. Laurent, 2001: Life cycle of Sahelian mesoscale convective cloud systems. Quart. J. Roy. Meteor. Soc., 127, 377406, doi:10.1002/qj.49712757208.

    • Search Google Scholar
    • Export Citation
  • Meisner, B. N., and P. A. Arkin, 1987: Spatial and annual variations in the diurnal cycle of large-scale tropical convective cloudiness and precipitation. Mon. Wea. Rev., 115, 20092032, doi:10.1175/1520-0493(1987)115<2009:SAAVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., D. Yan, and Y. Zhang, 2013: General features of squall lines in east China. Mon. Wea. Rev., 141, 16291647, doi:10.1175/MWR-D-12-00208.1.

    • Search Google Scholar
    • Export Citation
  • Migliorini, S., M. Dixon, R. Bannister, and S. Ballard, 2011: Ensemble prediction for nowcasting with a convection-permitting model—I: Description of the system and the impact of radar-derived surface precipitation rates. Tellus, 63A, 468496, doi:10.1111/j.1600-0870.2010.00503.x.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., and Y. Ding, 1982: Wind and temperature changes over Eurasia during the early summer of 1979. J. Meteor. Soc. Japan, 60, 183196.

    • Search Google Scholar
    • Export Citation
  • Pope, M., C. Jakob, and M. J. Reeder, 2008: Convective systems of the north Australian monsoon. J. Climate, 21, 50915112, doi:10.1175/2008JCLI2304.1.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, doi:10.1175/BAMS-86-8-1079.

    • Search Google Scholar
    • Export Citation
  • Schröder, M., M. König, and J. Schmetz, 2009: Deep convection observed by the Spinning Enhanced Visible and Infrared Imager on board Meteosat 8: Spatial distribution and temporal evolution over Africa in summer and winter 2006. J. Geophys. Res., 114, D05109, doi:10.1029/2008JD010653.

    • Search Google Scholar
    • Export Citation
  • Steranka, J., E. B. Rodgers, and R. C. Gentry, 1986: The relationship between satellite measured convective bursts and tropical cyclone intensification. Mon. Wea. Rev., 114, 15391546, doi:10.1175/1520-0493(1986)114<1539:TRBSMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., S. Zhao, G. Xu, and Q. Meng, 2010: Study on a mesoscale convective vortex causing heavy rainfall during the mei-yu season in 2003. Adv. Atmos. Sci., 27, 11931209, doi:10.1007/s00376-009-9156-6.

    • Search Google Scholar
    • Export Citation
  • Tian, B., I. M. Held, N.-C. Lau, and B. J. Soden, 2005: Diurnal cycle of summertime deep convection over North America: A satellite perspective. J. Geophys. Res., 110, D08108, doi:10.1029/2004JD005275.

    • Search Google Scholar
    • Export Citation
  • Velasco, I., and J. M. Fritsch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 95919613, doi:10.1029/JD092iD08p09591.

    • Search Google Scholar
    • Export Citation
  • Vila, D. A., L. A. T. Machado, H. Laurent, and I. Velasco, 2008: Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Wea. Forecasting, 23, 233245, doi:10.1175/2007WAF2006121.1.

    • Search Google Scholar
    • Export Citation
  • Xu, W., 2011: East Asian summer monsoon precipitation systems: Rainfall characteristics, storm morphologies and convective properties. Ph.D. thesis, University of Utah, 293 pp.

  • Xu, W., 2013: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 15771592, doi:10.1175/MWR-D-12-00177.1.

    • Search Google Scholar
    • Export Citation
  • Xu, W., and E. J. Zipser, 2011: Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau. J. Climate, 24, 448465, doi:10.1175/2010JCLI3719.1.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., and T. Miwa, 2006: Convective cloud systems over the Tibetan Plateau and their impact on meso-scale disturbances in the meiyu/baiu frontal zone—A case study in 1998. J. Meteor. Soc. Japan, 84, 783803, doi:10.2151/jmsj.84.783.

    • Search Google Scholar
    • Export Citation
  • Yu, R., T. Zhou, A. Xiong, Y. Zhu, and J. Li, 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, doi:10.1029/2006GL028129.

    • Search Google Scholar
    • Export Citation
  • Yu, R., W. Yuan, J. Li, and Y. Fu, 2010: Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China. Climate Dyn., 35, 567576, doi:10.1007/s00382-009-0568-x.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze, 2010: Global variability of mesoscale convective system anvil structure from A-Train satellite data. J. Climate, 23, 58645888, doi:10.1175/2010JCLI3671.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2003: Roles of tropospheric and boundary layer forcing in the diurnal cycle of convection in the U.S. Southern Great Plains. Geophys. Res. Lett., 30, 2281, doi:10.1029/2003GL018554.

    • Search Google Scholar
    • Export Citation
  • Zheng, L., J. Sun, X. Zhang, and C. Liu, 2013: Organizational modes of mesoscale convective systems over central east China. Wea. Forecasting, 28, 10811098, doi:10.1175/WAF-D-12-00088.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., J. Chen, and P. Zhu, 2008: Climatological distribution and diurnal variation of mesoscale convective systems over China and its vicinity during summer. Chin. Sci. Bull., 53 (10), 15741586.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 770 196 14
PDF Downloads 614 158 11