A Comparison of Two Ensemble Generation Methods Using Oceanic Singular Vectors and Atmospheric Lagged Initialization for Decadal Climate Prediction

Camille Marini Institut für Meereskunde, Center für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany

Search for other papers by Camille Marini in
Current site
Google Scholar
PubMed
Close
,
Iuliia Polkova Institut für Meereskunde, Center für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany

Search for other papers by Iuliia Polkova in
Current site
Google Scholar
PubMed
Close
,
Armin Köhl Institut für Meereskunde, Center für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany

Search for other papers by Armin Köhl in
Current site
Google Scholar
PubMed
Close
, and
Detlef Stammer Institut für Meereskunde, Center für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany

Search for other papers by Detlef Stammer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The sensitivity of ensemble spread and forecast skill scores of decadal predictions to details of the ensemble generation is investigated by incorporating uncertainties of ocean initial conditions using ocean singular-vector-based (OSV) perturbations. Results are compared to a traditional atmospheric lagged initialization (ALI) method. Both sets of experiments are performed using the coupled MPI-ESM model initialized from the GECCO2 ocean synthesis. The OSVs are calculated from a linear inverse model based on a historical MPI-ESM run. During the first three lead years, the sea surface temperature spread from ALI hindcasts appears to be strongly underestimated, while OSV hindcasts show a more realistic spread. However, for later lead times (the second pentad of hindcasts), the spread becomes overestimated for large areas of the ocean in both ensembles. Yet, for integrated measures such as the North Atlantic SST and Atlantic meridional overturning circulation, the spread of OSV hindcasts is overestimated at initial time and reduces over time. The spread reliability measures are shown to be sensitive to the choice of the verification dataset. In this context, it is found that HadISST tends to underestimate the variability of SST as compared to Reynolds SST and satellite observations. In terms of forecast skill for surface air temperature, SST, and ocean heat content, OSV hindcasts show improvement over ALI hindcasts over the North Atlantic Ocean up to lead year 5.

Corresponding author address: Iuliia Polkova, Institut für Meereskunde, CEN, Universität Hamburg, Bundesstr. 53, 20146, Hamburg, Germany. E-mail: iuliia.polkova@uni-hamburg.de

Abstract

The sensitivity of ensemble spread and forecast skill scores of decadal predictions to details of the ensemble generation is investigated by incorporating uncertainties of ocean initial conditions using ocean singular-vector-based (OSV) perturbations. Results are compared to a traditional atmospheric lagged initialization (ALI) method. Both sets of experiments are performed using the coupled MPI-ESM model initialized from the GECCO2 ocean synthesis. The OSVs are calculated from a linear inverse model based on a historical MPI-ESM run. During the first three lead years, the sea surface temperature spread from ALI hindcasts appears to be strongly underestimated, while OSV hindcasts show a more realistic spread. However, for later lead times (the second pentad of hindcasts), the spread becomes overestimated for large areas of the ocean in both ensembles. Yet, for integrated measures such as the North Atlantic SST and Atlantic meridional overturning circulation, the spread of OSV hindcasts is overestimated at initial time and reduces over time. The spread reliability measures are shown to be sensitive to the choice of the verification dataset. In this context, it is found that HadISST tends to underestimate the variability of SST as compared to Reynolds SST and satellite observations. In terms of forecast skill for surface air temperature, SST, and ocean heat content, OSV hindcasts show improvement over ALI hindcasts over the North Atlantic Ocean up to lead year 5.

Corresponding author address: Iuliia Polkova, Institut für Meereskunde, CEN, Universität Hamburg, Bundesstr. 53, 20146, Hamburg, Germany. E-mail: iuliia.polkova@uni-hamburg.de
Save
  • Anderson, D. L., and J. Willebrand, 1996: Decadal Climate Variability: Dynamics and Predictability. Vol. 44, Springer, 496 pp.

  • Barnett, T., R. Malone, W. Pennell, D. Stammer, B. Semtner, and W. Washington, 2004: The effects of climate change on water resources in the west: Introduction and overview. Climatic Change, 62, 111, doi:10.1023/B:CLIM.0000013695.21726.b8.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L. K., L. Magnusson, and E. Källén, 2008: Independent estimations of the asymptotic variability in an ensemble forecast system. Mon. Wea. Rev., 136, 41054112, doi:10.1175/2008MWR2526.1.

    • Search Google Scholar
    • Export Citation
  • Boer, G., V. Kharin, and W. Merryfield, 2013: Decadal predictability and forecast skill. Climate Dyn., 41, 18171833, doi:10.1007/s00382-013-1705-0.

    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. Kennedy, I. Harris, S. Tett, and P. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Brune, S., L. Nerger, and J. Baehr, 2015: Assimilation of oceanic observations in a global coupled earth system model with the SEIK filter. Ocean Modell., 96, 254264, doi:10.1016/j.ocemod.2015.09.011.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and M. Alexander, 2001: Rossby waves in the tropical North Pacific and their role in decadal thermocline variability. J. Phys. Oceanogr., 31, 34963515, doi:10.1175/1520-0485(2002)031<3496:RWITTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Coauthors, 2015: Skilful multi-year predictions of tropical trans-basin climate variability. Nat. Commun., 6, 6869, doi:10.1038/ncomms7869.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F., M. Balmaseda, A. Weisheimer, and T. Palmer, 2011: Decadal climate prediction with the European Centre for Medium-Range Weather Forecasts coupled forecast system: Impact of ocean observations. J. Geophys. Res., 116, D19111, doi:10.1029/2010JD015394.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F., and Coauthors, 2013: Initialized near-term regional climate change prediction. Nat. Commun., 4, 1715, doi:10.1038/ncomms2704.

    • Search Google Scholar
    • Export Citation
  • Du, H., F. Doblas-Reyes, J. García-Serrano, V. Guemas, Y. Soufflet, and B. Wouters, 2012: Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations. Climate Dyn., 39, 20132023, doi:10.1007/s00382-011-1285-9.

    • Search Google Scholar
    • Export Citation
  • Farrell, B., 1988: Optimal excitation of neutral Rossby waves. J. Atmos. Sci., 45, 163172, doi:10.1175/1520-0469(1988)045<0163:OEONRW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., F. Doblas-Reyes, and C. Coelho, 2012: Understanding Atlantic multi-decadal variability prediction skill. Geophys. Res. Lett., 39, L18708, doi:10.1029/2012GL053283.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572597, doi:10.1002/jame.20038.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, doi:10.1007/s00382-012-1481-2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2011: Estimating climatically relevant singular vectors for decadal predictions of the Atlantic Ocean. J. Climate, 24, 109123, doi:10.1175/2010JCLI3579.1.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., V. Guemas, B. Wouters, S. Corti, I. Andreu-Burillo, F. Doblas-Reyes, K. Wyser, and M. Caian, 2013: Multiyear climate predictions using two initialisation strategies. Geophys. Res. Lett., 40, 17941798, doi:10.1002/grl.50355.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ho, C. K., E. Hawkins, L. Shaffrey, J. Bröcker, L. Hermanson, J. M. Murphy, D. M. Smith, and R. Eade, 2013: Examining reliability of seasonal to decadal sea surface temperature forecasts: The role of ensemble dispersion. Geophys. Res. Lett., 40, 57705775, doi:10.1002/2013GL057630.

    • Search Google Scholar
    • Export Citation
  • Hudson, D., A. G. Marshall, Y. Yin, O. Alves, and H. H. Hendon, 2013: Improving intraseasonal prediction with a new ensemble generation strategy. Mon. Wea. Rev., 141, 44294449, doi:10.1175/MWR-D-13-00059.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2006: Atlantic climate variability and predictability: A CLIVAR perspective. J. Climate, 19, 51005121, doi:10.1175/JCLI3902.1.

    • Search Google Scholar
    • Export Citation
  • Ingleby, B., and M. Huddleston, 2007: Quality control of ocean temperature and salinity profiles—Historical and real-time data. J. Mar. Syst., 65, 158175, doi:10.1016/j.jmarsys.2005.11.019.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J., and Coauthors, 2013: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst., 5, 422446, doi:10.1002/jame.20023.

    • Search Google Scholar
    • Export Citation
  • Keller, J., and A. Hense, 2011: A new non-Gaussian evaluation method for ensemble forecasts based on analysis rank histograms. Meteor. Z., 20, 107117, doi:10.1127/0941-2948/2011/0217.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B., and Coauthors, 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 953–1028, doi:10.1017/CBO9781107415324.023.

  • Kleeman, R., Y. Tang, and A. M. Moore, 2003: The calculation of climatically relevant singular vectors in the presence of weather noise as applied to the ENSO problem. J. Atmos. Sci., 60, 28562868, doi:10.1175/1520-0469(2003)060<2856:TCOCRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kloeden, P. E., and E. Platen, 1992: Numerical Solution of Stochastic Differential Equations. Stochastic Modelling and Applied Probability Series, Vol. 23, Springer, 636 pp., doi:10.1007/978-3-662-12616-5.

  • Köhl, A., 2015: Evaluation of the GECCO2 ocean synthesis: Transports of volume, heat and freshwater in the Atlantic. Quart. J. Roy. Meteor. Soc., 141, 166181, doi:10.1002/qj.2347.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., and D. Stammer, 2008: Variability of the meridional overturning in the North Atlantic from the 50-yr GECCO state estimation. J. Phys. Oceanogr., 38, 19131930, doi:10.1175/2008JPO3775.1.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. Antonov, T. Boyer, R. Locarnini, H. Garcia, and A. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.

    • Search Google Scholar
    • Export Citation
  • Marini, C., and C. Frankignoul, 2014: An attempt to deconstruct the Atlantic Multidecadal Oscillation. Climate Dyn., 43, 607625, doi:10.1007/s00382-013-1852-3.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., and Coauthors, 2016: MiKlip—A national research project on decadal climate prediction. Bull. Amer. Meteor. Soc., in press.

  • Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 14671485, doi:10.1175/2009BAMS2778.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, doi:10.1038/nclimate1229.

    • Search Google Scholar
    • Export Citation
  • Mochizuki, T., and Coauthors, 2010: Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc. Natl. Acad. Sci. USA, 107, 18331837, doi:10.1073/pnas.0906531107.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, doi:10.1002/qj.49712252905.

    • Search Google Scholar
    • Export Citation
  • Müller, W., and Coauthors, 2012: Forecast skill of multi-year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophys. Res. Lett., 39, L22707, doi:10.1029/2012GL053326.

    • Search Google Scholar
    • Export Citation
  • Newman, M., 2007: Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J. Climate, 20, 23332356, doi:10.1175/JCLI4165.1.

    • Search Google Scholar
    • Export Citation
  • Newman, M., 2013: An empirical benchmark for decadal forecasts of global surface temperature anomalies. J. Climate, 26, 52605269, doi:10.1175/JCLI-D-12-00590.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2000: Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys., 63, 71116, doi:10.1088/0034-4885/63/2/201.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and L. Zanna, 2013: Singular vectors, predictability and ensemble forecasting for weather and climate. J. Phys. A: Math. Theor., 46, 254018, 1–17.

    • Search Google Scholar
    • Export Citation
  • Peña, M., and E. Kalnay, 2004: Separating fast and slow modes in coupled chaotic systems. Nonlinear Processes Geophys., 11, 319327, doi:10.5194/npg-11-319-2004.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1994: A balance condition for stochastic numerical models with application to the El NiñoSouthern Oscillation. J. Climate, 7, 13521372, doi:10.1175/1520-0442(1994)007<1352:ABCFSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, doi:10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11, 483496, doi:10.1175/1520-0442(1998)011<0483:POTASS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pierce, D., T. Barnett, R. Tokmakian, A. Semtner, M. Maltrud, J. Lysne, and A. Craig, 2004: The ACPI project, element 1: Initializing a coupled climate model from observed conditions. Climatic Change, 62, 1328, doi:10.1023/B:CLIM.0000013676.42672.23.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., J. Jungclaus, A. Köhl, D. Stammer, and J. Marotzke, 2009: Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J. Climate, 22, 39263938, doi:10.1175/2009JCLI2535.1.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., and Coauthors, 2013: Improved forecast skill in the tropics in the new MiKlip decadal climate predictions. Geophys. Res. Lett., 40, 57985802, doi:10.1002/2013GL058051.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Romanova, V., and A. Hense, 2016: Anomaly transform methods based on total energy and ocean heat content norms for generating ocean dynamic disturbances for ensemble climate forecasts. Climate Dyn., doi:10.1007/s00382-015-2567-4, in press.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., S. Cusack, A. Colman, C. Folland, G. Harris, and J. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799, doi:10.1126/science.1139540.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, and H. Pohlmann, 2013: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 33253338, doi:10.1007/s00382-013-1683-2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, doi:10.1002/jame.20015.

    • Search Google Scholar
    • Export Citation
  • Sutton, R., and M. Allen, 1997: Decadal predictability of North Atlantic sea surface temperature and climate. Nature, 388, 563567, doi:10.1038/41523.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., R. Kleeman, and S. Miller, 2006: ENSO predictability of a fully coupled GCM model using singular vector analysis. J. Climate, 19, 33613377, doi:10.1175/JCLI3771.1.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 3297-3319, doi:10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and P. J. Ioannou, 2002: Transient growth and optimal excitation of thermohaline variability. J. Phys. Oceanogr., 32, 34273435, doi:10.1175/1520-0485(2002)032<3427:TGAOEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Zanna, and C. Penland, 2008: Nonnormal thermohaline circulation dynamics in a coupled ocean–atmosphere GCM. J. Phys. Oceanogr., 38, 588604, doi:10.1175/2007JPO3769.1.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., F. J. Doblas-Reyes, B. Wouters, and W. Hazeleger, 2012: Decadal prediction skill in a multi-model ensemble. Climate Dyn., 38, 12631280, doi:10.1007/s00382-012-1313-4.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and E. Sarachik, 1991: Evidence for decadal variability in an ocean general circulation model: An advective mechanism. Atmos.–Ocean, 29, 197231, doi:10.1080/07055900.1991.9649403.

    • Search Google Scholar
    • Export Citation
  • Wentz, F., C. Gentemann, and P. Ashcroft, 2003: On-orbit calibration of AMSR-E and the retrieval of ocean products. 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., P5.9. [Available online at https://ams.confex.com/ams/annual2003/techprogram/paper_56760.htm.]

  • Wilks, D., 2011: Statistical Methods in the Atmospheric Sciences. Vol. 100, Academic Press, 676 pp.

  • Winkler, C. R., M. Newman, and P. D. Sardeshmukh, 2001: A linear model of wintertime low-frequency variability. Part I: Formulation and forecast skill. J. Climate, 14, 44744494, doi:10.1175/1520-0442(2001)014<4474:ALMOWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and Coauthors, 2013: A predictable AMO-like pattern in the GFDL fully coupled ensemble initialization and decadal forecasting system. J. Climate, 26, 650661, doi:10.1175/JCLI-D-12-00231.1.

    • Search Google Scholar
    • Export Citation
  • Zanna, L., P. Heimbach, A. M. Moore, and E. Tziperman, 2011: Optimal excitation of interannual Atlantic Meridional Overturning Circulation variability. J. Climate, 24, 413427, doi:10.1175/2010JCLI3610.1.

    • Search Google Scholar
    • Export Citation
  • Zanna, L., P. Heimbach, A. Moore, and E. Tziperman, 2012: Upper-ocean singular vectors of the North Atlantic climate with implications for linear predictability and variability. Quart. J. Roy. Meteor. Soc., 138, 500513, doi:10.1002/qj.937.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, L. Marx, J. L. Kinter, M. A. Balmaseda, R.-H. Zhang, and Z.-Z. Hu, 2012: Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys. Res. Lett., 39, L09602, doi:10.1029/2012GL051503.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., B. Huang, M. A. Balmaseda, J. L. Kinter III, P. Peng, Z.-Z. Hu, and L. Marx, 2013: Improved reliability of ENSO hindcasts with multi-ocean analyses ensemble initialization. Climate Dyn., 41, 27852795, doi:10.1007/s00382-013-1965-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 512 305 1
PDF Downloads 126 30 1