Evaluating and Improving the Impact of the Atmospheric Stability and Orography on Surface Winds in the WRF Model

Raquel Lorente-Plazas Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, Notre Dame, Indiana, and Research Application Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Raquel Lorente-Plazas in
Current site
Google Scholar
PubMed
Close
,
Pedro A. Jiménez Research Application Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Pedro A. Jiménez in
Current site
Google Scholar
PubMed
Close
,
Jimy Dudhia Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jimy Dudhia in
Current site
Google Scholar
PubMed
Close
, and
Juan P. Montávez Department of Physics, University of Murcia, Murcia, Spain

Search for other papers by Juan P. Montávez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study assesses the impact of the atmospheric stability on the turbulent orographic form drag (TOFD) generated by unresolved small-scale orography (SSO) focusing on surface winds. With this aim, several experiments are conducted with the Weather Research and Forecasting (WRF) Model and they are evaluated over a large number of stations (318 at 2-m height) in the Iberian Peninsula with a year of data. In WRF, Jiménez and Dudhia resolved the SSO by including a factor in the momentum equation, which is a function of the orographic variability inside a grid cell. It is found that this scheme can improve the simulated surface winds, especially at night, but it can underestimate the winds during daytime. This suggests that TOFD can be dependent on the PBL’s stability. To inspect and overcome this limitation, the stability conditions are included in the SSO parameterization to maintain the intensity of the drag during stable conditions while attenuating it during unstable conditions. The numerical experiments demonstrate that the inclusion of stability effects on the SSO drag parameterization improves the simulated surface winds at diurnal, monthly, and annual scales by reducing the systematic daytime underestimation of the original scheme. The correction is especially beneficial when both the convective velocity and the boundary layer height are used to characterize the unstable conditions.

Corresponding author address: Raquel Lorente-Plazas, National Center for Atmospheric Research, Research Application Laboratory, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: lorente.plazas@gmail.com

Abstract

This study assesses the impact of the atmospheric stability on the turbulent orographic form drag (TOFD) generated by unresolved small-scale orography (SSO) focusing on surface winds. With this aim, several experiments are conducted with the Weather Research and Forecasting (WRF) Model and they are evaluated over a large number of stations (318 at 2-m height) in the Iberian Peninsula with a year of data. In WRF, Jiménez and Dudhia resolved the SSO by including a factor in the momentum equation, which is a function of the orographic variability inside a grid cell. It is found that this scheme can improve the simulated surface winds, especially at night, but it can underestimate the winds during daytime. This suggests that TOFD can be dependent on the PBL’s stability. To inspect and overcome this limitation, the stability conditions are included in the SSO parameterization to maintain the intensity of the drag during stable conditions while attenuating it during unstable conditions. The numerical experiments demonstrate that the inclusion of stability effects on the SSO drag parameterization improves the simulated surface winds at diurnal, monthly, and annual scales by reducing the systematic daytime underestimation of the original scheme. The correction is especially beneficial when both the convective velocity and the boundary layer height are used to characterize the unstable conditions.

Corresponding author address: Raquel Lorente-Plazas, National Center for Atmospheric Research, Research Application Laboratory, 3450 Mitchell Lane, Boulder, CO 80301. E-mail: lorente.plazas@gmail.com
Save
  • Allen, T., and A. R. Brown, 2006: Modelling of turbulent form drag in convective conditions. Bound.-Layer Meteor., 118, 421429, doi:10.1007/s10546-005-9002-z.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555, doi:10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Belcher, S., and N. Wood, 1996: Form and wave drag due to stably stratified turbulent flow over low ridges. Quart. J. Roy. Meteor. Soc., 122, 863902, doi:10.1002/qj.49712253205.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1995: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, doi:10.1002/qj.49712152203.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., A. R. Brown, and N. Wood, 2004: A new parametrization of turbulent orographic form drag. Quart. J. Roy. Meteor. Soc., 130, 13271347, doi:10.1256/qj.03.73.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The rapid refresh. Mon. Wea. Rev., 144, 16691694, doi:10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102, doi:10.1029/JZ067i008p03095.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., and N. Wood, 2003: Properties and parameterization of the stable boundary layer over moderate topography. J. Atmos. Sci., 60, 27972808, doi:10.1175/1520-0469(2003)060<2797:PAPOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State/NCAR MM5 Modeling System. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569586, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fiedler, F., and H. A. Panofsky, 1972: The geostrophic drag coefficient and the ‘effective’ roughness length. Quart. J. Roy. Meteor. Soc., 98, 213220, doi:10.1002/qj.49709841519.

    • Search Google Scholar
    • Export Citation
  • Fitch, A. C., J. K. Lundquist, and J. B. Olson, 2013: Mesoscale influences of wind farms throughout a diurnal cycle. Mon. Wea. Rev., 141, 21732198, doi:10.1175/MWR-D-12-00185.1.

    • Search Google Scholar
    • Export Citation
  • Gómez-Navarro, J. J., C. C. Raible, and S. Dierer, 2015: Sensitivity of the WRF model to PBL parametrizations and nesting techniques: Evaluation of surface wind over complex terrain. Geosci. Model Dev. Discuss., 8, 54375479, doi:10.5194/gmdd-8-5437-2015.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and P. J. Mason, 1990: Observations of boundary-layer structure over complex terrain. Quart. J. Roy. Meteor. Soc., 116, 159186, doi:10.1002/qj.49711649107.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42 (2), 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., P. M. Klein, and M. Xue, 2013: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. Atmos., 118, 10 49010 505, doi:10.1002/jgrd.50823.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300316, doi:10.1175/JAMC-D-11-084.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and J. Dudhia, 2013: On the ability of the WRF model to reproduce the surface wind direction over complex terrain. J. Appl. Meteor. Climatol., 52, 16101617, doi:10.1175/JAMC-D-12-0266.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, doi:10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Lee, J., H. H. Shin, S.-Y. Hong, P. A. Jiménez, J. Dudhia, and J. Hong, 2015: Impacts of subgrid-scale orography parameterization on simulated surface layer wind and monsoonal precipitation in the high-resolution WRF model. J. Geophys. Res. Atmos., 120, 644653, doi:10.1002/2014JD022747.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., F. Chen, T. Warner, S. Swerdlin, J. Bowers, and S. Halvorson, 2004: Improvements to surface flux computations in a non-local-mixing PBL scheme, and refinements on urban processes in the NOAH land-surface model with the NCAR/ATEC real-time FDDA and forecast system. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 22.2. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_72489.htm.]

  • Lorente-Plazas, R., J. P. Montávez, P. A. Jimenez, S. Jerez, J. J. Gómez-Navarro, J. A. Garcia-Valero, and P. Jimenez-Guerrero, 2015: Characterization of surface winds over the Iberian Peninsula. Int. J. Climatol., 35, 10071026, doi:10.1002/joc.4034.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, doi:10.1002/qj.49712353704.

    • Search Google Scholar
    • Export Citation
  • Mellor, G., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mellor, G., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Milton, S. F., and C. A. Wilson, 1996: The impact of parameterized subgrid-scale orographic forcing on systematic errors in a global NWP model. Mon. Wea. Rev., 124, 20232045, doi:10.1175/1520-0493(1996)124<2023:TIOPSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., and Coauthors, 2008: Multisensor estimation of mixing heights over a coastal city. J. Appl. Meteor. Climatol., 47, 2743, doi:10.1175/2007JAMC1503.1.

    • Search Google Scholar
    • Export Citation
  • Oke, T., 1996: Boundary Layer Climates. 2nd ed. University Press, 345 pp.

  • Rontu, L., 2006: A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model. Tellus, 58A, 6981, doi:10.1111/j.1600-0870.2006.00162.x.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., P. Bechtold, A. Beljaars, A. Bozzo, F. Pithan, T. G. Shepherd, and A. Zadra, 2016: Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation. J. Adv. Model. Earth Syst., 8, 196211, doi:10.1002/2015MS000564.

    • Search Google Scholar
    • Export Citation
  • Santos-Alamillos, F., D. Pozo-Vázquez, J. Ruiz-Arias, V. Lara-Fanego, and J. Tovar-Pescador, 2013: Analysis of WRF Model wind estimate sensitivity to physics parameterization choice and terrain representation in Andalusia (southern Spain). J. Appl. Meteor. Climatol., 52, 15921609, doi:10.1175/JAMC-D-12-0204.1.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261281, doi:10.1007/s10546-010-9583-z.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Stull, R., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 670 pp.

  • Wood, N., 2000: Wind flow over complex terrain: A historical perspective and the prospect for large-eddy modelling. Bound.-Layer Meteor., 96, 1132, doi:10.1023/A:1002017732694.

    • Search Google Scholar
    • Export Citation
  • Wood, N., and P. Mason, 1993: The pressure force induced by neutral, turbulent flow over hills. Quart. J. Roy. Meteor. Soc., 119, 12331267, doi:10.1002/qj.49711951402.

    • Search Google Scholar
    • Export Citation
  • Wood, N., A. Brown, and F. Hewer, 2001: Parametrizing the effects of orography on the boundary layer: An alternative to effective roughness lengths. Quart. J. Roy. Meteor. Soc., 127, 759777, doi:10.1002/qj.49712757303.

    • Search Google Scholar
    • Export Citation
  • Xu, D., and P. A. Taylor, 1995: Boundary-layer parametrization of drag over small-scale topography. Quart. J. Roy. Meteor. Soc., 121, 433443, doi:10.1002/qj.49712152210.

    • Search Google Scholar
    • Export Citation
  • Zadra, A., and Coauthors, 2013: WGNE Drag Project—An inter-model comparison of surface stresses. Rep. 1, Atmosperic Numerical Weather Prediction Research Division, Environment Canada, 36 pp. [Available online at http://collaboration.cmc.ec.gc.ca/science/rpn/drag_project/documents/wgne_drag_project_report01.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1184 464 36
PDF Downloads 724 212 11