A Numerical Study of the 6 May 2012 Tsukuba City Supercell Tornado. Part II: Mechanisms of Tornadogenesis

Wataru Mashiko Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Wataru Mashiko in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In Part I, the vorticity sources of midlevel and low-level mesocyclones in the 6 May 2012 Tsukuba City, Japan, tornadic supercell were investigated by using high-resolution simulation results with a 50-m horizontal grid spacing. In Part II, the analyses are extended to the mechanisms of tornadogenesis. The tornado was generated at the leading edge of a rear-flank downdraft (RFD) outflow surge. Backward-trajectory and vortex line analyses revealed that the RFD outflow surge was a triggering factor for tornadogenesis and that horizontal vorticity around the strong RFD outflow region was ingested into the tornado. To identify the vorticity source of the tornado, the evolution of circulation along a material circuit surrounding the tornado was investigated. Owing to baroclinity at the tip of a hook-shaped distribution of hydrometeors (hereafter hook echo), the circulation increased rapidly from a negative value when the core of the hydrometeors was descending, about 10 min prior to tornadogenesis. Analysis of the buoyancy field as well as a sensitivity experiment without diabatic cooling showed that baroclinity associated with cooling due to evaporation of rain and melting of ice-phase hydrometeors around the tip of the hook echo was the dominant vorticity source responsible for tornadogenesis.

Corresponding author address: Wataru Mashiko, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: wmashiko@mri-jma.go.jp

Abstract

In Part I, the vorticity sources of midlevel and low-level mesocyclones in the 6 May 2012 Tsukuba City, Japan, tornadic supercell were investigated by using high-resolution simulation results with a 50-m horizontal grid spacing. In Part II, the analyses are extended to the mechanisms of tornadogenesis. The tornado was generated at the leading edge of a rear-flank downdraft (RFD) outflow surge. Backward-trajectory and vortex line analyses revealed that the RFD outflow surge was a triggering factor for tornadogenesis and that horizontal vorticity around the strong RFD outflow region was ingested into the tornado. To identify the vorticity source of the tornado, the evolution of circulation along a material circuit surrounding the tornado was investigated. Owing to baroclinity at the tip of a hook-shaped distribution of hydrometeors (hereafter hook echo), the circulation increased rapidly from a negative value when the core of the hydrometeors was descending, about 10 min prior to tornadogenesis. Analysis of the buoyancy field as well as a sensitivity experiment without diabatic cooling showed that baroclinity associated with cooling due to evaporation of rain and melting of ice-phase hydrometeors around the tip of the hook echo was the dominant vorticity source responsible for tornadogenesis.

Corresponding author address: Wataru Mashiko, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan. E-mail: wmashiko@mri-jma.go.jp
Save
  • Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 2045–2069, doi:10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beck, J., and C. Weiss, 2013: An assessment of low-level baroclinity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649–669, doi:10.1175/MWR-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327–341, doi:10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., R. J. Donaldson Jr., and P. R. Desrochers, 1993: Tornado detection and warning by radar. The Tornado: Its Structure, Dynamics, Prediction and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 203–221.

  • Byko, Z., P. M. Markowski, Y. Richardson, J. Wurman, and E. Adlerman, 2009: Descending reflectivity cores in supercell thunderstorms observed by mobile radars and in a high-resolution numerical simulation. Wea. Forecasting, 24, 155–186, doi:10.1175/2008WAF2222116.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2012: Uncertainties in trajectory calculations within near-surface mesocyclones of simulated supercells. Mon. Wea. Rev., 140, 2959–2966, doi:10.1175/MWR-D-12-00131.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 3027–3051, doi:10.1175/JAS-D-13-0123.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1982: Observational and theoretical aspects of tornadogenesis. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer, 175–189.

  • Davies-Jones, R., 2006: Tornadogenesis in supercell storms—What we know and what we don’t know. Symp. on the Challenges of Severe Convective Storms, Atlanta, GA, Amer. Meteor. Soc., 2.2. [Available online at https://ams.confex.com/ams/Annual2006/techprogram/paper_104563.htm.]

  • Davies-Jones, R., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274–291, doi:10.1016/j.atmosres.2014.04.007.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114.

  • Davies-Jones, R., and P. Markowski, 2013: Lifting of ambient air by density currents in sheared environments. J. Atmos. Sci., 70, 1204–1215, doi:10.1175/JAS-D-12-0149.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495–527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and P. M. Markowski, 2004: Is buoyancy a relative quantity? Mon. Wea. Rev., 132, 853–863, doi:10.1175/1520-0493(2004)132<0853:IBARQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Finley, C. A., and B. D. Lee, 2008: Mobile mesonet observations of an intense RFD and multiple RFD gust fronts in the May 23 Quinter, Kansas tornadic supercell during TWISTEX 2008. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., P3.18. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142133.htm.]

  • Finley, C. A., W. R. Cotton, and R. A. Pielke, 2001: Numerical simulation of tornadogenesis in a high-precipitation supercell. Part I: Storm evolution and transition into a bow echo. J. Atmos. Sci., 58, 1597–1629, doi:10.1175/1520-0469(2001)058<1597:NSOTIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from project ANSWERS. Mon. Wea. Rev., 135, 240–246, doi:10.1175/MWR3288.1.

    • Search Google Scholar
    • Export Citation
  • Hagemeyer, B. C., 1997: Peninsular Florida tornado outbreaks. Wea. Forecasting, 12, 399–427, doi:10.1175/1520-0434(1997)012<0399:PFTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., J. L. Schroeder, and C. C. Weiss, 2008: Surface analysis of the rear-flank downdraft outflow in two tornadic supercells. Mon. Wea. Rev., 136, 2344–2363, doi:10.1175/2007MWR2285.1.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., H. Mizuno, T. Matsuo, M. Murakami, Y. Yamada, and K. Saito, 1991: Numerical modeling of the convective snow cloud over the Sea of Japan: Precipitation mechanism and sensitivity to ice crystal nucleation rates. J. Meteor. Soc. Japan, 69, 641–667.

    • Search Google Scholar
    • Export Citation
  • Kennedy, A. D., J. M. Straka, and E. N. Rasmussen, 2007a: A statistical study of the association of DRCs with supercells and tornadoes. Wea. Forecasting, 22, 1191–1199, doi:10.1175/2007WAF2006095.1.

    • Search Google Scholar
    • Export Citation
  • Kennedy, A. D., E. N. Rasmussen, and J. M. Straka, 2007b: A visual observation of the 6 June 2005 descending reflectivity core. Electron. J. Severe Storms Meteor., 2 (6). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/16.]

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359–377, doi:10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 1157–1181, doi:10.1175/MWR-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and T. M. Samaras, 2011: Surface analysis near and within the Tipton, Kansas, tornado on 29 May 2008. Mon. Wea. Rev., 139, 370–386, doi:10.1175/2010MWR3454.1.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and C. D. Karstens, 2012: The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges. Mon. Wea. Rev., 140, 3419–3441, doi:10.1175/MWR-D-11-00351.1.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 1184–1197, doi:10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852–876, doi:10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243–275, doi:10.1175/JAS-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 1692–1721, doi:10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2003: Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60, 795–823, doi:10.1175/1520-0469(2003)060<0795:TRFTTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, J. M. Straka, R. Davies-Jones, Y. Richardson, and R. J. Trapp, 2008: Vortex lines within low-level mesocyclones obtained from pseudo-dual-Doppler radar observations. Mon. Wea. Rev., 136, 3513–3535, doi:10.1175/2008MWR2315.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. Richardson, M. Majcen, J. Marquis, and J. Wurman, 2011: Characteristics of the wind field in three nontornadic low-level mesocyclones observed by the Doppler On Wheels radars. Electron. J. Severe Storms Meteor., 6 (3). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/75.]

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012a: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 2887–2915, doi:10.1175/MWR-D-11-00336.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012b: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 2916–2938, doi:10.1175/MWR-D-11-00337.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, J. Wurman, and P. Markowski, 2008: Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm-scale flow in the Crowell, Texas, supercell of 30 April 2000. Mon. Wea. Rev., 136, 5017–5043, doi:10.1175/2008MWR2442.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. M. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 3–27, doi:10.1175/MWR-D-11-00025.1.

    • Search Google Scholar
    • Export Citation
  • Mashiko, W., 2016: A numerical study of the 6 May 2012 Tsukuba City supercell tornado. Part I: Vorticity sources of low-level and midlevel mesocyclones. Mon. Wea. Rev., 144, 1069–1092, doi:10.1175/MWR-D-15-0123.1.

    • Search Google Scholar
    • Export Citation
  • Mashiko, W., H. Niino, and T. Kato, 2009: Numerical simulation of tornadogenesis in an outer-rainband minisupercell of Typhoon Shanshan on 17 September 2006. Mon. Wea. Rev., 137, 4238–4260, doi:10.1175/2009MWR2959.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud—The 19 July 1981 CCOPE cloud. J. Meteor. Soc. Japan, 68, 107–128.

    • Search Google Scholar
    • Export Citation
  • Noda, A., and H. Niino, 2010: A numerical investigation of a supercell tornado: Genesis and vorticity budget. J. Meteor. Soc. Japan, 88, 135–159, doi:10.2151/jmsj.2010-203.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and J. M. L. Dahl, 2015: Production of near-surface vertical vorticity by idealized downdrafts. Mon. Wea. Rev., 143, 2795–2816, doi:10.1175/MWR-D-14-00310.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell III, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 995–1006, doi:10.1175/1520-0477(1994)075<0995:VOTOOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, M. S. Gilmore, and R. Davies-Jones, 2006: A preliminary survey of rear-flank descending reflectivity cores in supercell storms. Wea. Forecasting, 21, 923–938, doi:10.1175/WAF962.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271–292, doi:10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 1266–1298, doi:10.1175/MWR3120.1.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and M. Hu, 2014: Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma City supercell. J. Atmos. Sci., 71, 130–154, doi:10.1175/JAS-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and D. T. Dawson II, 2016: The cause of internal outflow surges in a high-resolution simulation of the 8 May 2003 Oklahoma City tornadic supercell. J. Atmos. Sci., 73, 353–370, doi:10.1175/JAS-D-15-0112.1.

    • Search Google Scholar
    • Export Citation
  • Shabbott, C. J., and P. M. Markowski, 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 1422–1441, doi:10.1175/MWR3131.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, M. M. French, H. B. Bluestein, P. M. Markowski, and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rear-flank downdraft momentum surges in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 142, 2935–2960, doi:10.1175/MWR-D-13-00240.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, L. J. Wicker, C. K. Potvin, and D. C. Dowell, 2015: Forcing mechanisms for an internal rear-flank downdraft momentum surge in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 143, 4305–4330, doi:10.1175/MWR-D-15-0164.1.

    • Search Google Scholar
    • Export Citation
  • Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, L24803, doi:10.1029/2008GL035866.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, R. P. Davies-Jones, and P. M. Markowski, 2007: An observational and idealized numerical examination of low-level counter-rotating vortices in the rear flank of supercells. Electron. J. Severe Storms Meteor., 2 (8). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/issue/view/11.]

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 1999: Observations of nontornadic low-level mesocyclones and attendant tornadogenesis failure during VORTEX. Mon. Wea. Rev., 127, 1693–1705, doi:10.1175/1520-0493(1999)127<1693:OONLLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., G. J. Stumpf, and K. L. Manross, 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680–687, doi:10.1175/WAF864.1.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., 1993: Tornado spin-up beneath a convective cell: Required basic structure of the near-field boundary layer winds. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 89–95.

  • Weiss, C. C., D. C. Dowell, J. L. Schroeder, P. S. Skinner, A. E. Reinhart, P. M. Markowski, and Y. P. Richardson, 2015: A comparison of near-surface buoyancy and baroclinity across three VORTEX2 supercell intercepts. Mon. Wea. Rev., 143, 2736–2753, doi:10.1175/MWR-D-14-00307.1.

    • Search Google Scholar
    • Export Citation
  • Wicker, L., and R. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 2675–2703, doi:10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736–758, doi:10.1175/MWR3276.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Markowski, Y. Richardson, D. Dowell, and P. Robinson, 2010: Finescale single- and dual-Doppler analysis of tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, supercell. Mon. Wea. Rev., 138, 4439–4455, doi:10.1175/2010MWR3330.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second verification of the origins of rotation in tornadoes experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 1147–1170, doi:10.1175/BAMS-D-11-00010.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 554 177 18
PDF Downloads 308 118 16