Abstract
In Part I, the vorticity sources of midlevel and low-level mesocyclones in the 6 May 2012 Tsukuba City, Japan, tornadic supercell were investigated by using high-resolution simulation results with a 50-m horizontal grid spacing. In Part II, the analyses are extended to the mechanisms of tornadogenesis. The tornado was generated at the leading edge of a rear-flank downdraft (RFD) outflow surge. Backward-trajectory and vortex line analyses revealed that the RFD outflow surge was a triggering factor for tornadogenesis and that horizontal vorticity around the strong RFD outflow region was ingested into the tornado. To identify the vorticity source of the tornado, the evolution of circulation along a material circuit surrounding the tornado was investigated. Owing to baroclinity at the tip of a hook-shaped distribution of hydrometeors (hereafter hook echo), the circulation increased rapidly from a negative value when the core of the hydrometeors was descending, about 10 min prior to tornadogenesis. Analysis of the buoyancy field as well as a sensitivity experiment without diabatic cooling showed that baroclinity associated with cooling due to evaporation of rain and melting of ice-phase hydrometeors around the tip of the hook echo was the dominant vorticity source responsible for tornadogenesis.