On the Structure and Dynamics of Indian Monsoon Depressions

Kieran M. R. Hunt Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Kieran M. R. Hunt in
Current site
Google Scholar
PubMed
Close
,
Andrew G. Turner NCAS-Climate, and Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Andrew G. Turner in
Current site
Google Scholar
PubMed
Close
,
Peter M. Inness Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Peter M. Inness in
Current site
Google Scholar
PubMed
Close
,
David E. Parker Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by David E. Parker in
Current site
Google Scholar
PubMed
Close
, and
Richard C. Levine Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Richard C. Levine in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

ERA-Interim reanalysis data from the past 35 years have been used with a newly developed feature tracking algorithm to identify Indian monsoon depressions originating in or near the Bay of Bengal. These were then rotated, centralized, and combined to give a fully three-dimensional 106-depression composite structure—a considerably larger sample than any previous detailed study on monsoon depressions and their structure. Many known features of depression structure are confirmed, particularly the existence of a maximum to the southwest of the center in rainfall and other fields and a westward axial tilt in others. Additionally, the depressions are found to have significant asymmetry owing to the presence of the Himalayas, a bimodal midtropospheric potential vorticity core, a separation into thermally cold (~−1.5 K) and neutral (~0 K) cores near the surface with distinct properties, and the center has very large CAPE and very small CIN. Variability as a function of background state has also been explored, with land–coast–sea, diurnal, ENSO, active–break, and Indian Ocean dipole contrasts considered. Depressions are found to be markedly stronger during the active phase of the monsoon, as well as during La Niña. Depressions on land are shown to be more intense and more tightly constrained to the central axis. A detailed schematic diagram of a vertical cross section through a composite depression is also presented, showing its inherent asymmetric structure.

Denotes Open Access content.

Corresponding author address: Kieran M. R. Hunt, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: k.hunt@pgr.reading.ac.uk

Abstract

ERA-Interim reanalysis data from the past 35 years have been used with a newly developed feature tracking algorithm to identify Indian monsoon depressions originating in or near the Bay of Bengal. These were then rotated, centralized, and combined to give a fully three-dimensional 106-depression composite structure—a considerably larger sample than any previous detailed study on monsoon depressions and their structure. Many known features of depression structure are confirmed, particularly the existence of a maximum to the southwest of the center in rainfall and other fields and a westward axial tilt in others. Additionally, the depressions are found to have significant asymmetry owing to the presence of the Himalayas, a bimodal midtropospheric potential vorticity core, a separation into thermally cold (~−1.5 K) and neutral (~0 K) cores near the surface with distinct properties, and the center has very large CAPE and very small CIN. Variability as a function of background state has also been explored, with land–coast–sea, diurnal, ENSO, active–break, and Indian Ocean dipole contrasts considered. Depressions are found to be markedly stronger during the active phase of the monsoon, as well as during La Niña. Depressions on land are shown to be more intense and more tightly constrained to the central axis. A detailed schematic diagram of a vertical cross section through a composite depression is also presented, showing its inherent asymmetric structure.

Denotes Open Access content.

Corresponding author address: Kieran M. R. Hunt, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: k.hunt@pgr.reading.ac.uk
Save
  • Bell, R., K. I. Hodges, P. L. Vidale, J. Strachan, and M. Roberts, 2014: Simulation of the global ENSO-tropical cyclone teleconnection by a high-resolution coupled general circulation model. J. Climate, 27, 64046422, doi:10.1175/JCLI-D-13-00559.1.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., J. V. Hurley, and V. S. Murthy, 2015: Adiabatic westward drift of Indian monsoon depressions. Quart. J. Roy. Meteor. Soc., 141, 10351048, doi:10.1002/qj.2454.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23, 16211635, doi:10.1175/2009JCLI3318.1.

    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. Houze, 2006: Characteristics of tropical convection over the ocean near Kwajalein. Mon. Wea. Rev., 134, 834853, doi:10.1175/MWR3075.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., and W. R. Boos, 2014: Has the number of Indian summer monsoon depressions decreased over the last 30 years? Geophys. Res. Lett., 41, 78467853, doi:10.1002/2014GL061895.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., M. K. Hawcroft, M. A. Stringer, and K. I. Hodges, 2012: An extratropical cyclone atlas: A tool for illustrating cyclone structure and evolution characteristics. Bull. Amer. Meteor. Soc., 93, 14971502, doi:10.1175/BAMS-D-11-00164.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Desai, B. N., 1951: On the development and structure of monsoon depressions in India. Mem. Indian Meteor. Dept., 28, 217228.

  • Dhar, O. N., and P. R. Rakhecha, 1976: Does the absence of cyclonic disturbances cause deficient rainfall in north Indian subdivisions during monsoon months? Proc. Indian Natl. Sci. Acad., 42, 8189.

    • Search Google Scholar
    • Export Citation
  • Ding, Y.-H., 1981: A case study of formation and structure of a depression over the Arabian Sea. Chin. J. Atmos. Sci., 5, 267280.

  • Ding, Y.-H., X. Q. Fu, and B. Y. Zhang, 1984: A study of the structure of a monsoon depression over the Bay of Bengal during the summer MONEX. Adv. Atmos. Sci., 1, 6275, doi:10.1007/BF03187617.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1979: Bootstrap methods: Another look at the jackknife. Ann. Stat., 7, 126, doi:10.1214/aos/1176344552.

  • Felton, C. S., B. Subrahmanyam, and V. S. N. Murty, 2013: ENSO-modulated cyclogenesis over the Bay of Bengal. J. Climate, 26, 98069818, doi:10.1175/JCLI-D-13-00134.1.

    • Search Google Scholar
    • Export Citation
  • Godbole, R., 1977: The composite structure of the monsoon depression. Tellus, 29, 2540, doi:10.1111/j.2153-3490.1977.tb00706.x.

  • Hawkins, H., and D. Rubsam, 1968: Hurricane Hilda, 1964. II. Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617636, doi:10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H., and S. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442, doi:10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds. Bull. Amer. Meteor. Soc., 79, 831844, doi:10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2010: Review: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293344, doi:10.1175/2009MWR2989.1.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM multi-satellite precipitation analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22.

  • Hurley, J. V., and W. R. Boos, 2015: A global climatology of monsoon low pressure system. Quart. J. Roy. Meteor. Soc., 141, 10491064, doi:10.1002/qj.2447.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2010: Formation of tropical cyclones in the Northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J. Meteor. Soc. Japan, 88, 475496, doi:10.2151/jmsj.2010-313.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., and Coauthors, 2001: Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens., 39, 102116, doi:10.1109/36.898669.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2007: Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J. Climate, 20, 320, doi:10.1175/JCLI3981.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and R. S. Ajayamohan, 2010: Composite structure of monsoon low pressure systems and its relation to Indian rainfall. J. Climate, 23, 42854305, doi:10.1175/2010JCLI2953.1.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., D. Ayantika, V. Kumar, and S. Pokhrel, 2011: The long-lived monsoon depressions of 2006 and their linkage with the Indian Ocean Dipole. Int. J. Climatol., 31, 13341352, doi:10.1002/joc.2156.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • La Seur, N., and H. Hawkins, 1963: An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91, 694709, doi:10.1175/1520-0493(1963)091<0694:AAOHCB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M., E. Zipser, and S. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 34933518, doi:10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., D. Ostrenga, W. Teng, and S. Kempler, 2012: Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications. Bull. Amer. Meteor. Soc., 93, 13171325, doi:10.1175/BAMS-D-11-00152.1.

    • Search Google Scholar
    • Export Citation
  • Mooley, D. A., 1973: Some aspects of Indian monsoon depressions and the associated rainfall. Mon. Wea. Rev., 101, 271280, doi:10.1175/1520-0493(1973)101<0271:SAOIMD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mull, S., and Y. P. Rao, 1949: Indian tropical storms and zones of heavy rainfall. Indian J. Phys., 23, 371377.

  • Nair, S., G. Srinivasan, and R. Nemani, 2009: Evaluation of multi-satellite TRMM derived rainfall estimates over a western state of India. J. Meteor. Soc. Japan, 87, 927939, doi:10.2151/jmsj.87.927.

    • Search Google Scholar
    • Export Citation
  • Pai, D. S., L. Sridhar, M. Rajeevan, O. P. Sreejith, N. S. Satbhai, and B. Mukhopadhyay, 2014: Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam (New Delhi), 65, 118.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1956: Motion and Motion Systems. Vol. 1, Weather Analysis and Forecasting, McGraw-Hill, 428 pp.

  • Prajeesh, A. G., K. Ashok, and D. V. Bhaskar Rao, 2013: Falling monsoon depression frequency: A Gray-Sikka conditions perspective. Sci. Rep., 3, 18, doi:10.1038/srep02989.

    • Search Google Scholar
    • Export Citation
  • Prakash, S., and R. Gairola, 2014: Validation of TRMM-3B42 precipitation product over the tropical Indian Ocean using rain gauge data from the RAMA buoy array. Theor. Appl. Climatol., 115, 451460, doi:10.1007/s00704-013-0903-3.

    • Search Google Scholar
    • Export Citation
  • Prasad, K., S. R. Kalsi, and R. K. Datta, 1990: On some aspects of wind and cloud structure of monsoon depressions. Mausam (New Delhi), 41, 365370.

    • Search Google Scholar
    • Export Citation
  • Raghavan, K., 1967: Influence of tropical storms on monsoon rainfall in India. Weather, 22, 250256, doi:10.1002/j.1477-8696.1967.tb02929.x.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1959: Hurricane development. J. Meteor., 16, 227237, doi:10.1175/1520-0469(1959)016<0227:HD>2.0.CO;2.

  • Ramanathan, K. R., and K. P. Ramakrishnan, 1933: The Indian southwest monsoon and the structure of depressions associated with it. Mem. Indian Meteor. Dept., 26, 1336.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1983: The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon. Wea. Rev., 111, 517528, doi:10.1175/1520-0493(1983)111<0517:TRBEEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, doi:10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roy, S. C., and A. K. Roy, 1930: Structure and movement of cyclones in the Indian seas. Beitr. Phys. Atmos., 26, 224234.

  • Saha, K., F. Sanders, and J. Shukla, 1981: Westward propagating predecessors of monsoon depressions. Mon. Wea. Rev., 109, 330343, doi:10.1175/1520-0493(1981)109<0330:WPPOMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saji, N., B. Goswami, P. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian ocean. Nature, 401, 360363.

  • Sarker, R. P., and A. Choudhary, 1988: A diagnostic study of monsoon depressions. Mausam (New Delhi), 39, 918.

  • Sikka, D. R., 1977: Some aspects of the life history, structure and movement of monsoon depressions. Pure Appl. Geophys., 115, 15011529, doi:10.1007/BF00874421.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., 2006: A study on the monsoon low pressure systems over the Indian region and their relationship with drought and excess monsoon seasonal rainfall. Center for Ocean–Land–Atmosphere Studies Tech. Rep., 61 pp.

  • Sikka, D. R., and D. K. Paul, 1975: A diagnostic study on the structure of monsoon depressions. Geophysical Fluid Dynamics Workshop: Monsoon Meteorology, Bangalore, India, 136–182.

  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF. Quart. J. Roy. Meteor. Soc., 113, 899927, doi:10.1002/qj.49711347710.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, doi:10.1007/s00382-012-1607-6.

    • Search Google Scholar
    • Export Citation
  • Stano, G., T. N. Krishnamurti, T. S. V. Vijaya Kumar, and A. Chakraborty, 2002: Hydrometeor structure of a composite monsoon depression using the TRMM radar. Tellus, 54A, 370381, doi:10.1034/j.1600-0870.2002.01330.x.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 16571680, doi:10.1175/JAS-D-11-010.1.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., E. Berge, and J. E. Kristjansson, 1989: Condensation and cloud studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 16411657, doi:10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, A. G., P. M. Inness, and J. M. Slingo, 2005: The role of the basic state in the ENSO–monsoon relationship and implications for predictability. Quart. J. Roy. Meteor. Soc., 131, 781804, doi:10.1256/qj.04.70.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, doi:10.1002/qj.49711850705.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magaña, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, doi:10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., and T.-C. Chen, 2005: Water vapor budget of the Indian monsoon depression. Tellus, 57A, 770782, doi:10.1111/j.1600-0870.2005.00145.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1897 454 57
PDF Downloads 1795 390 39