Comparison of the Tornadic and Nontornadic Supercells Intercepted by VORTEX2 on 10 June 2010

Alicia M. Klees The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Alicia M. Klees in
Current site
Google Scholar
PubMed
Close
,
Yvette P. Richardson The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yvette P. Richardson in
Current site
Google Scholar
PubMed
Close
,
Paul M. Markowski The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Paul M. Markowski in
Current site
Google Scholar
PubMed
Close
,
Christopher Weiss Texas Tech University, Lubbock, Texas

Search for other papers by Christopher Weiss in
Current site
Google Scholar
PubMed
Close
,
Joshua M. Wurman Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Joshua M. Wurman in
Current site
Google Scholar
PubMed
Close
, and
Karen K. Kosiba Center for Severe Weather Research, Boulder, Colorado

Search for other papers by Karen K. Kosiba in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 10 June 2010, the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) armada collected a rare set of observations of a nontornadic and a tornadic supercell evolving in close proximity to each other. The storms and their environments were analyzed using single- and dual-Doppler radar, mobile mesonet, deployable surface mesonet, and mobile sounding data, with the goal of understanding why one supercell produced no tornadoes while the other produced at least two. Outflow temperature deficits were similar for the two storms, both within the normal range for weakly tornadic supercells but somewhat cold relative to significantly tornadic supercells. The storms formed in a complex environment, with slightly higher storm-relative helicity near the tornadic supercell. The environment evolved significantly in time, with large thermodynamic changes and increases in storm-relative helicity, leading to conditions much more favorable for tornadogenesis. After a few hours, a new storm developed between the supercells, likely leading to the demise of the nontornadic supercell before it was able to experience the enhanced environmental conditions. Two tornadoes developed within the single mesocyclone of the other supercell. After the dissipation of the second tornado, rapid rearward motion of low- to midlevel circulations may have inhibited further tornado production in this storm.

Denotes Open Access content.

Corresponding author address: Alicia M. Klees, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: amk5375@psu.edu

Abstract

On 10 June 2010, the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) armada collected a rare set of observations of a nontornadic and a tornadic supercell evolving in close proximity to each other. The storms and their environments were analyzed using single- and dual-Doppler radar, mobile mesonet, deployable surface mesonet, and mobile sounding data, with the goal of understanding why one supercell produced no tornadoes while the other produced at least two. Outflow temperature deficits were similar for the two storms, both within the normal range for weakly tornadic supercells but somewhat cold relative to significantly tornadic supercells. The storms formed in a complex environment, with slightly higher storm-relative helicity near the tornadic supercell. The environment evolved significantly in time, with large thermodynamic changes and increases in storm-relative helicity, leading to conditions much more favorable for tornadogenesis. After a few hours, a new storm developed between the supercells, likely leading to the demise of the nontornadic supercell before it was able to experience the enhanced environmental conditions. Two tornadoes developed within the single mesocyclone of the other supercell. After the dissipation of the second tornado, rapid rearward motion of low- to midlevel circulations may have inhibited further tornado production in this storm.

Denotes Open Access content.

Corresponding author address: Alicia M. Klees, Department of Meteorology, The Pennsylvania State University, 503 Walker Building, University Park, PA 16802. E-mail: amk5375@psu.edu
Save
  • Alexander, C. R., and J. Wurman, 2005: The 30 May 1998 Spencer, South Dakota, storm. Part I: The structural evolution and environment of the tornadoes. Mon. Wea. Rev., 133, 72–96, doi:10.1175/MWR-2855.1.

    • Search Google Scholar
    • Export Citation
  • Alexander, C. R., and J. M. Wurman, 2008: Updated mobile radar climatology of supercell tornado structures and dynamics. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 19.4. [Available online at https://ams.confex.com/ams/pdfpapers/141821.pdf.]

  • Barnes, S., 1964: A technique for maximizing details in numerical weather-map analysis. J. Appl. Meteor., 3, 396–409, doi:10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beck, J., and C. Weiss, 2013: An assessment of low-level baroclinity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649–669, doi:10.1175/MWR-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 1263–1274, doi:10.1175/BAMS-86-9-1263.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046–1053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bothwell, P. D., J. A. Hart, and R. L. Thompson, 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., JP3.1. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47482.htm.]

  • Brandes, E., 1977: Flow in severe thunderstorms observed by dual-Doppler radar. Mon. Wea. Rev., 105, 113–120, doi:10.1175/1520-0493(1977)105<0113:FISTOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., M. R. Hjelmfelt, and P. L. Smith, 2006: An observational examination of long-lived supercells. Part I: Characteristics, evolution, and demise. Wea. Forecasting, 21, 673–688, doi:10.1175/WAF949.1.

    • Search Google Scholar
    • Export Citation
  • Burgess, D., V. Wood, and R. Brown, 1982: Mesocyclone evolution statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424.

  • Burgess, D., E. R. Mansell, C. M. Schwarz, and B. J. Allen, 2010: Tornado and tornadogenesis events seen by the NOXP x-band, dual-polarization radar during VORTEX2 2010. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 5.2. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_176164.htm.]

  • Coffer, B. E., and M. D. Parker, 2015: Impacts of increasing low-level shear on supercells during the early evening transition. Mon. Wea. Rev., 143, 1945–1969, doi:10.1175/MWR-D-14-00328.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 3027–3051, doi:10.1175/JAS-D-13-0123.1.

    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., and M. D. Parker, 2015: Impact of environmental heterogeneity on the dynamics of a dissipating supercell thunderstorm. Mon. Wea. Rev., 143, 4244–4277, doi:10.1175/MWR-D-15-0072.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 2991–3006, doi:10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2008: Can a descending rain curtain in a supercell instigate tornadogenesis barotropically? J. Atmos. Sci., 65, 2469–2497, doi:10.1175/2007JAS2516.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274–291, doi:10.1016/j.atmosres.2014.04.007.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., and H. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114.

  • Davies-Jones, R., D. W. Burgess, and M. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

  • Dowell, D., and H. Bluestein, 2002a: The 8 June 1995 McLean, Texas, storm. Part I: Observations of cyclic tornadogenesis. Mon. Wea. Rev., 130, 2626–2648, doi:10.1175/1520-0493(2002)130<2626:TJMTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dowell, D., and H. Bluestein, 2002b: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 2649–2670, doi:10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dowell, D., and A. Shapiro, 2003: Stability of an iterative dual-Doppler wind synthesis in Cartesian coordinates. J. Atmos. Oceanic Technol., 20, 1552–1559, doi:10.1175/1520-0426(2003)020<1552:SOAIDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Finley, C., W. Cotton, and R. S. Pielke, 2001: Numerical simulation of tornadogenesis in a high-precipitation supercell. Part I: Storm evolution and transition into a bow echo. J. Atmos. Sci., 58, 1597–1629, doi:10.1175/1520-0469(2001)058<1597:NSOTIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frame, J., and P. Markowski, 2013: Dynamical influences of anvil shading on simulated supercell thunderstorms. Mon. Wea. Rev., 141, 2802–2820, doi:10.1175/MWR-D-12-00146.1.

    • Search Google Scholar
    • Export Citation
  • French, M., H. Bluestein, D. Dowell, L. Wicker, M. Kramar, and A. Pazmany, 2008: High-resolution, mobile Doppler radar observations of cyclic mesocyclogenesis in a supercell. Mon. Wea. Rev., 136, 4997–5016, doi:10.1175/2008MWR2407.1.

    • Search Google Scholar
    • Export Citation
  • Hastings, R., and Y. Richardson, 2016: Long-term morphological changes in simulated supercells following mergers with nascent supercells in directionally varying shear. Mon. Wea. Rev., 144, 471–499, doi:10.1175/MWR-D-15-0193.1.

    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., J. L. Schroeder, and C. C. Weiss, 2008: Surface analysis of the rear-flank downdraft outflow in two tornadic supercells. Mon. Wea. Rev., 136, 2344–2363, doi:10.1175/2007MWR2285.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359–377, doi:10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koch, S., M. DesJardins, and P. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 1487–1503, doi:10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kost, J., 2004: Impacts of Temporally Variable Environmental Vertical Wind Shear upon Numerically Simulated Convective Storms. The Pennsylvania State University, 106 pp.

  • Lebo, Z. J., and H. Morrison, 2014: Dynamical effects of aerosol perturbations on simulated idealized squall lines. Mon. Wea. Rev., 142, 991–1009, doi:10.1175/MWR-D-13-00156.1.

    • Search Google Scholar
    • Export Citation
  • Lee, B., B. Jewett, and R. Wilhelmson, 2006: The 19 April 1996 Illinois tornado outbreak. Part II: Cell mergers and associated tornado incidence. Wea. Forecasting, 21, 449–464, doi:10.1175/WAF943.1.

    • Search Google Scholar
    • Export Citation
  • Letkewicz, C. E., A. J. French, and M. D. Parker, 2013: Base-state substitution: An idealized modeling technique for approximating environmental variability. Mon. Wea. Rev., 141, 3062–3086, doi:10.1175/MWR-D-12-00200.1.

    • Search Google Scholar
    • Export Citation
  • Lilly, D., 1982: The development and maintenance of rotation in convective storms. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 149–160.

  • Loehrer, S., T. Edmands, and J. Moore, 1996: TOGA COARE upper-air sounding data archive: Development and quality control procedures. Bull. Amer. Meteor. Soc., 77, 2651–2671, doi:10.1175/1520-0477(1996)077<2651:TCUASD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loehrer, S., S. Williams, and J. Moore, 1998: Results from UCAR/JOSS quality control of atmospheric soundings from field projects. Preprints, 10th Symp. on Meteorological Observations and Instrumentation, Phoenix, AZ, Amer. Meteor. Soc., 1–6.

  • Majcen, M., P. Markowski, Y. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analyses of Doppler radar data. J. Atmos. Oceanic Technol., 25, 1845–1858, doi:10.1175/2008JTECHA1089.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243–275, doi:10.1175/JAS-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., J. M. Straka, E. N. Rasmussen, and D. O. Blanchard, 1998: Variability of storm-relative helicity during VORTEX. Mon. Wea. Rev., 126, 2959–2971, doi:10.1175/1520-0493(1998)126<2959:VOSRHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 1692–1721, doi:10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., Y. Richardson, M. Majcen, J. Marquis, and J. Wurman, 2011: Characteristics of the wind field in three nontornadic low-level mesocyclones observed by the Doppler on Wheels radars. Electron. J. Severe Storms Meteor., 6, 1–48.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 2887–2915, doi:10.1175/MWR-D-11-00336.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF Analysis. Mon. Wea. Rev., 140, 3–27, doi:10.1175/MWR-D-11-00025.1.

    • Search Google Scholar
    • Export Citation
  • NCDC, 2010: Storm Data. Vol. 52, No. 6, 1022 pp. [Available from National Centers for Environmental Information, 151 Patton Ave., Asheville, NC 28801-5001.]

  • NOAA, 2011: 2011 tornado information. Accessed 7 December 2013. [Available online at http://www.noaanews.noaa.gov/2011_tornado_information.html.]

  • Oye, R., C. Mueller, and S. Smith, 1995: Software for radar translation, visualization, editing, and interpolation. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 359–361.

  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508–529, doi:10.1175/MWR-D-13-00167.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and J. M. L. Dahl, 2015: Production of near-surface vertical vorticity by idealized downdrafts. Mon. Wea. Rev., 143, 2795–2816, doi:10.1175/MWR-D-14-00310.1.

    • Search Google Scholar
    • Export Citation
  • Pauley, P., and X. Wu, 1990: The theoretical, discrete, and actual response of the Barnes objective analysis scheme for one- and two-dimensional fields. Mon. Wea. Rev., 118, 1145–1164, doi:10.1175/1520-0493(1990)118<1145:TTDAAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530–535, doi:10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., and D. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 1148–1164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richardson, Y. P., and K. K. Droegemeier, 1996: An investigation of the dynamics governing organized multicell rotation and transition. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 195–199.

  • Richardson, Y. P., K. K. Droegemeier, and R. P. Davies-Jones, 2007: The influence of horizontal environmental variability on numerically simulated convective storms. Part I: Variations in vertical shear. Mon. Wea. Rev., 135, 3429–3455, doi:10.1175/MWR3463.1.

    • Search Google Scholar
    • Export Citation
  • Rilling, R., and C. Schumacher, 2013: SMART-R during DYNAMO: A technique to diagnose elevation angle errors. 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., P238.

  • Rogers, J., 2012: Significant tornado events associated with cell mergers. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 9.4. [Available online at https://ams.confex.com/ams/26SLS/webprogram/Paper211575.html.]

  • Rogers, J., and C. Weiss, 2008: The association of cell mergers with tornado occurrence. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., P3.23. [Available online at https://ams.confex.com/ams/pdfpapers/141784.pdf.]

  • Rotunno, R., 1981: On the evolution of thunderstorm rotation. Mon. Wea. Rev., 109, 577–586, doi:10.1175/1520-0493(1981)109<0577:OTEOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271–292, doi:10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and M. Hu, 2014: Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma City supercell. J. Atmos. Sci., 71, 130–154, doi:10.1175/JAS-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Shabbott, C. J., and P. M. Markowski, 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 1422–1441, doi:10.1175/MWR3131.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, P. M. Markowski, and Y. P. Richardson, 2010: Intercomparison between mobile and stationary surface observing platforms in VORTEX2. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P5.1. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_176245.htm.]

  • Skinner, P. S., C. C. Weiss, J. L. Schroeder, L. J. Wicker, and M. I. Biggerstaff, 2011: Observations of the surface boundary structure within the 23 May 2007 Perryton, Texas, supercell. Mon. Wea. Rev., 139, 3730–3749, doi:10.1175/MWR-D-10-05078.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, M. M. French, H. B. Bluestein, P. M. Markowski, and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rear-flank downdraft momentum surges in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 142, 2935–2960, doi:10.1175/MWR-D-13-00240.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for fine-scale meteorological observations. J. Atmos. Oceanic Technol., 13, 921–936, doi:10.1175/1520-0426(1996)013<0921:AMMFFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, J. B. Houser, S. J. Frasier, and K. M. Hardwick, 2012: Mobile, X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 2103–2125, doi:10.1175/MWR-D-11-00142.1.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., P. L. Heinselman, and L. J. Wicker, 2015: Impacts of a storm merger on the 24 May 2011 El Reno, Oklahoma, tornadic supercell. Wea. Forecasting, 30, 501–524, doi:10.1175/WAF-D-14-00164.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R., R. Edwards, and J. Hart, 2002: Evaluation and interpretation of the supercell composite and significant tornado parameters at the Storm Prediction Center. 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., J3.2. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_46942.htm.]

  • Thompson, R., R. Edwards, and J. Hart, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 1243–1261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R., B. Smith, J. Grams, A. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Wea. Forecasting, 27, 1136–1154, doi:10.1175/WAF-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R., and C. Doswell, 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17, 105–120, doi:10.1175/1520-0426(2000)017<0105:RDOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, R., G. Stumpf, and K. Manross, 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680–687, doi:10.1175/WAF864.1.

    • Search Google Scholar
    • Export Citation
  • Waugh, S., and S. E. Fredrickson, 2010: An improved aspirated temperature system for mobile meteorological observations, especially in severe weather. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P5.2. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_176205.htm.]

  • Weiss, C., and J. Schroeder, 2008: StickNet: A new portable, rapidly deployable surface observation system. Bull. Amer. Meteor. Soc., 89, 1502–1503.

    • Search Google Scholar
    • Export Citation
  • Weiss, C., D. C. Dowell, J. L. Schroeder, P. S. Skinner, A. E. Reinhart, P. M. Markowski, and Y. P. Richardson, 2015: A comparison of near-surface buoyancy and baroclinity across three VORTEX2 supercell intercepts. Mon. Wea. Rev., 143, 2736–2753, doi:10.1175/MWR-D-14-00307.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., J. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 1502–1512, doi:10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 133, 97–119, doi:10.1175/MWR3276.1.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment. Bull. Amer. Meteor. Soc., 93, 1147–1170, doi:10.1175/BAMS-D-11-00010.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 727 280 33
PDF Downloads 501 142 10