Diabatic Processes and the Evolution of Two Contrasting Summer Extratropical Cyclones

Oscar Martínez-Alvarado National Centre for Atmospheric Science–Atmospheric Physics and Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Oscar Martínez-Alvarado in
Current site
Google Scholar
PubMed
Close
,
Suzanne L. Gray Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Suzanne L. Gray in
Current site
Google Scholar
PubMed
Close
, and
John Methven Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by John Methven in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extratropical cyclones are typically weaker and less frequent in summer as a result of differences in the background state flow and diabatic processes with respect to other seasons. Two extratropical cyclones were observed in summer 2012 with a research aircraft during the Diabatic Influences on Mesoscale Structures in Extratropical Storms (DIAMET) field campaign. The first cyclone deepened only down to 995 hPa; the second cyclone deepened down to 978 hPa and formed a potential vorticity (PV) tower, a frequent signature of intense cyclones. The objectives of this article are to quantify the effects of diabatic processes and their parameterizations on cyclone dynamics. The cyclones were analyzed through numerical simulations incorporating tracers for the effects of diabatic processes on potential temperature and PV. The simulations were compared with radar rainfall observations and dropsonde measurements. It was found that the observed maximum vapor flux in the stronger cyclone was twice as strong as in the weaker cyclone; the water vapor mass flow along the warm conveyor belt of the stronger cyclone was over half that typical in winter. The model overestimated water vapor mass flow by approximately a factor of 2 as a result of deeper structure in the rearward flow and humidity in the weaker case. An integral tracer interpretation is introduced, relating the tracers with cross-isentropic mass transport and circulation. It is shown that the circulation around the cyclone increases much more slowly than the amplitude of the diabatically generated PV tower. This effect is explained using the PV impermeability theorem.

Denotes Open Access content.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Oscar Martínez-Alvarado, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: o.martinezalvarado@reading.ac.uk

This article is included in the Diabatic Influence on Mesoscale Structures in Extratropical Storms (DIAMET) special collection.

Abstract

Extratropical cyclones are typically weaker and less frequent in summer as a result of differences in the background state flow and diabatic processes with respect to other seasons. Two extratropical cyclones were observed in summer 2012 with a research aircraft during the Diabatic Influences on Mesoscale Structures in Extratropical Storms (DIAMET) field campaign. The first cyclone deepened only down to 995 hPa; the second cyclone deepened down to 978 hPa and formed a potential vorticity (PV) tower, a frequent signature of intense cyclones. The objectives of this article are to quantify the effects of diabatic processes and their parameterizations on cyclone dynamics. The cyclones were analyzed through numerical simulations incorporating tracers for the effects of diabatic processes on potential temperature and PV. The simulations were compared with radar rainfall observations and dropsonde measurements. It was found that the observed maximum vapor flux in the stronger cyclone was twice as strong as in the weaker cyclone; the water vapor mass flow along the warm conveyor belt of the stronger cyclone was over half that typical in winter. The model overestimated water vapor mass flow by approximately a factor of 2 as a result of deeper structure in the rearward flow and humidity in the weaker case. An integral tracer interpretation is introduced, relating the tracers with cross-isentropic mass transport and circulation. It is shown that the circulation around the cyclone increases much more slowly than the amplitude of the diabatically generated PV tower. This effect is explained using the PV impermeability theorem.

Denotes Open Access content.

This article is licensed under a Creative Commons Attribution 4.0 license.

Corresponding author address: Oscar Martínez-Alvarado, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, United Kingdom. E-mail: o.martinezalvarado@reading.ac.uk

This article is included in the Diabatic Influence on Mesoscale Structures in Extratropical Storms (DIAMET) special collection.

Save
  • Adler, R., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 1147–1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ahmadi-Givi, F., G. C. Craig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Quart. J. Roy. Meteor. Soc., 130, 295–323, doi:10.1256/qj.02.226.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and N. M. Roberts, 1994: Structure of a frontal cyclone. Quart. J. Roy. Meteor. Soc., 120, 1535–1557, doi:10.1002/qj.49712052006.

    • Search Google Scholar
    • Export Citation
  • ÄŒampa, J., and H. Wernli, 2012: A PV perspective on the vertical structure of mature midlatitude cyclones in the Northern Hemisphere. J. Atmos. Sci., 69, 725–740, doi:10.1175/JAS-D-11-050.1.

    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2009: Potential vorticity diagnosis of a tropopause polar cyclone. Mon. Wea. Rev., 137, 1358–1371, doi:10.1175/2008MWR2670.1.

    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., and S. L. Gray, 2009: Horizontal potential vorticity dipoles on the convective storm scale. Quart. J. Roy. Meteor. Soc., 135, 1392–1408, doi:10.1002/qj.468.

    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., and S. L. Gray, 2015: A diabatically generated potential vorticity structure near the extratropical tropopause in three simulated extratropical cyclones. Mon. Wea. Rev., 143, 2337–2347, doi:10.1175/MWR-D-14-00092.1.

    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., S. L. Gray, and J. Methven, 2013: Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Quart. J. Roy. Meteor. Soc., 139, 1270–1282, doi:10.1002/qj.2037.

    • Search Google Scholar
    • Export Citation
  • Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759–1782, doi:10.1256/qj.04.101.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis. Mon. Wea. Rev., 120, 2409–2428, doi:10.1175/1520-0493(1992)120<2409:APVDOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dearden, C., G. Vaughan, T. Tsai, and J. P. Chen, 2016: Exploring the diabatic role of ice microphysical processes in two North Atlantic summer cyclones. Mon. Wea. Rev., 144, 1249–1272, doi:10.1175/MWR-D-15-0253.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., S. K. Krueger, and K. N. Liou, 1995: Interactions of radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci., 52, 1310–1328, doi:10.1175/1520-0469(1995)052<1310:IORACI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 2174–2193, doi:10.1002/qj.891.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., 2006: Mechanisms of midlatitude cross-tropopause transport using a potential vorticity budget approach. J. Geophys. Res., 111, D17113, doi:10.1029/2005JD006259.

    • Search Google Scholar
    • Export Citation
  • Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, doi:10.1029/2012GL053866.

    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. H. Vonder Haar, T. L’Ecuyer, and D. Henderson, 2013: Radiative heating characteristics of Earth’s cloudy atmosphere from vertically resolved active sensors. Geophys. Res. Lett., 40, 624–630, doi:10.1002/grl.50145.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828–841, doi:10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 36–50, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J. Roy. Meteor. Soc., 138, 407–418, doi:10.1002/qj.934.

    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 3–26, doi:10.1175/JCLI-D-12-00720.1.

    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., and R. S. Plant, 2014: Parameterized diabatic processes in numerical simulations of an extratropical cyclone. Quart. J. Roy. Meteor. Soc., 140, 1742–1755, doi:10.1002/qj.2254.

    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., L. H. Baker, S. L. Gray, J. Methven, and R. S. Plant, 2014a: Distinguishing the cold conveyor belt and sting jet air streams in an intense extratropical cyclone. Mon. Wea. Rev., 142, 2571–2595, doi:10.1175/MWR-D-13-00348.1.

    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., H. Joos, J. Chagnon, M. Boettcher, S. L. Gray, R. S. Plant, J. Methven, and H. Wernli, 2014b: The dichotomous structure of the warm conveyor belt. Quart. J. Roy. Meteor. Soc., 140, 1809–1824, doi:10.1002/qj.2276.

    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., E. Madonna, S. L. Gray, and H. Joos, 2015: A route to systematic error in forecasts of Rossby waves. Quart. J. Roy. Meteor. Soc., 142, 196–210, doi:10.1002/qj.2645.

    • Search Google Scholar
    • Export Citation
  • Methven, J., 2015: Potential vorticity in warm conveyor belt outflow. Quart. J. Roy. Meteor. Soc., 141, 1065–1071, doi:10.1002/qj.2393.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1986: Geophysical Fluid Dynamics. Springer, 710 pp.

  • Rossa, A. M., H. Wernli, and H. C. Davies, 2000: Growth and decay of an extra-tropical cyclone’s PV-tower. Meteor. Atmos. Phys., 73, 139–156, doi:10.1007/s007030050070.

    • Search Google Scholar
    • Export Citation
  • Saffin, L., J. Methven, and S. L. Gray, 2015: The non-conservation of potential vorticity by a dynamical core compared with the effects of parametrized physical processes. Quart. J. Roy. Meteor. Soc., 142, 1265–1275, doi:10.1002/qj.2729.

    • Search Google Scholar
    • Export Citation
  • Schäfler, A., and F. Harnisch, 2015: Impact of the inflow moisture on the evolution of a warm conveyor belt. Quart. J. Roy. Meteor. Soc., 141, 299–310, doi:10.1002/qj.2360.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and D. Keyser, 1990: Fronts, jet streams and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

  • Simmons, A. J., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849–874, doi:10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tracton, M. S., 1973: The role of cumulus convection in the development of extratropical cyclones. Mon. Wea. Rev., 101, 573–593, doi:10.1175/1520-0493(1973)101<0573:TROCCI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vaughan, G., 2011: DIAMET: Ensemble of Atmospheric Airborne and Ground-based Measurements including Radar Data. NCAS British Atmospheric Data Centre, accessed June 2014. [Available online at http://catalogue.ceda.ac.uk/uuid/6ca226c9634e57437f204ad9c5be77e1.]

  • Vaughan, G., and Coauthors, 2015: Cloud banding and winds in intense European cyclones—Results from the DIAMET project. Bull. Amer. Meteor. Soc., 96, 249–265, doi:10.1175/BAMS-D-13-00238.1.

    • Search Google Scholar
    • Export Citation
  • Whitehead, J. P., C. Jablonowski, J. Kent, and R. B. Rood, 2014: Potential vorticity: Measuring consistency between GCM dynamical cores and tracer advection schemes. Quart. J. Roy. Meteor. Soc., 141, 739–751, doi:10.1002/qj.2389.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 125, 1607–1636, doi:10.1002/qj.49712555707.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725–735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2002 637 29
PDF Downloads 339 94 8