A Validation of the Antarctic Mesoscale Prediction System Using Self-Organizing Maps and High-Density Observations from SNOWWEB

Ben Jolly University of Canterbury, Christchurch, New Zealand

Search for other papers by Ben Jolly in
Current site
Google Scholar
PubMed
Close
,
Adrian J. McDonald University of Canterbury, Christchurch, New Zealand

Search for other papers by Adrian J. McDonald in
Current site
Google Scholar
PubMed
Close
,
Jack H. J. Coggins University of Canterbury, Christchurch, New Zealand

Search for other papers by Jack H. J. Coggins in
Current site
Google Scholar
PubMed
Close
,
Peyman Zawar-Reza University of Canterbury, Christchurch, New Zealand

Search for other papers by Peyman Zawar-Reza in
Current site
Google Scholar
PubMed
Close
,
John Cassano University of Colorado Boulder, Boulder, Colorado

Search for other papers by John Cassano in
Current site
Google Scholar
PubMed
Close
,
Matthew Lazzara University of Wisconsin–Madison, and Madison Area Technical College, Madison, Wisconsin

Search for other papers by Matthew Lazzara in
Current site
Google Scholar
PubMed
Close
,
Geoffery Graham University of Canterbury, Christchurch, New Zealand

Search for other papers by Geoffery Graham in
Current site
Google Scholar
PubMed
Close
,
Graeme Plank University of Canterbury, Christchurch, New Zealand

Search for other papers by Graeme Plank in
Current site
Google Scholar
PubMed
Close
,
Orlon Petterson University of Canterbury, Christchurch, New Zealand

Search for other papers by Orlon Petterson in
Current site
Google Scholar
PubMed
Close
, and
Ethan Dale University of Canterbury, Christchurch, New Zealand

Search for other papers by Ethan Dale in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study compares high-resolution output (1.1-km horizontal grid length) from twice-daily forecasts produced by the Antarctic Mesoscale Prediction System (AMPS) with a dense observational network east of Ross Island. Covering 10 000 km2, 15 SNOWWEB stations significantly increased the number of observation stations in the area to 19 during the 2014–15 austral summer. Collocated “virtual stations” created from AMPS output are combined with observations, producing a single dataset of zonal and meridional wind components used to train a self-organizing map (SOM). The resulting SOM is used to individually classify the observational and AMPS datasets, producing a time series of classifications for each dataset directly comparable to the other. Analysis of class composites shows two dominant weather patterns: low but directionally variable winds and high but directionally constant winds linked to the Ross Ice Shelf airstream (RAS). During RAS events the AMPS and SNOWWEB data displayed good temporal class alignment with good surface wind correlation. SOM analysis shows that AMPS did not accurately forecast surface-level wind speed or direction during light wind conditions where synoptic forcing was weak; however, it was able to forecast the low wind period occurrence accurately. Coggins’s regimes provide synoptic-scale context and show a reduced synoptic pressure gradient during these classes, increasing reliance on the ability of Polar WRF to resolve mesoscale dynamics. Available initialization data have insufficient resolution for the region’s complex topography, which likely impacts performance. The SOM analysis methods used are shown to be effective for model validation and are widely applicable.

Corresponding author address: Adrian McDonald, Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. E-mail: adrian.mcdonald@canterbury.ac.nz

Abstract

This study compares high-resolution output (1.1-km horizontal grid length) from twice-daily forecasts produced by the Antarctic Mesoscale Prediction System (AMPS) with a dense observational network east of Ross Island. Covering 10 000 km2, 15 SNOWWEB stations significantly increased the number of observation stations in the area to 19 during the 2014–15 austral summer. Collocated “virtual stations” created from AMPS output are combined with observations, producing a single dataset of zonal and meridional wind components used to train a self-organizing map (SOM). The resulting SOM is used to individually classify the observational and AMPS datasets, producing a time series of classifications for each dataset directly comparable to the other. Analysis of class composites shows two dominant weather patterns: low but directionally variable winds and high but directionally constant winds linked to the Ross Ice Shelf airstream (RAS). During RAS events the AMPS and SNOWWEB data displayed good temporal class alignment with good surface wind correlation. SOM analysis shows that AMPS did not accurately forecast surface-level wind speed or direction during light wind conditions where synoptic forcing was weak; however, it was able to forecast the low wind period occurrence accurately. Coggins’s regimes provide synoptic-scale context and show a reduced synoptic pressure gradient during these classes, increasing reliance on the ability of Polar WRF to resolve mesoscale dynamics. Available initialization data have insufficient resolution for the region’s complex topography, which likely impacts performance. The SOM analysis methods used are shown to be effective for model validation and are widely applicable.

Corresponding author address: Adrian McDonald, Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. E-mail: adrian.mcdonald@canterbury.ac.nz
Save
  • Bromwich, D. H., 1989: Satellite analyses of Antarctic katabatic wind behavior. Bull. Amer. Meteor. Soc., 70, 738749, doi:10.1175/1520-0477(1989)070<0738:SAOAKW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and Z. Liu, 1996: An observational study of the katabatic wind confluence zone near Siple Coast, West Antarctica. Mon. Wea. Rev., 124, 462477, doi:10.1175/1520-0493(1996)124<0462:AOSOTK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. F. Carrasco, and C. R. Stearns, 1992: Satellite observations of katabatic-wind propagation for great distances across the Ross Ice Shelf. Mon. Wea. Rev., 120, 19401949, doi:10.1175/1520-0493(1992)120<1940:SOOKWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. J. Monaghan, K. W. Manning, and J. G. Powers, 2005: Real-time forecasting for the Antarctic: An evaluation of the Antarctic Mesoscale Prediction System (AMPS). Mon. Wea. Rev., 133, 579603, doi:10.1175/MWR-2881.1.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and Coauthors, 2012: Tropospheric clouds in Antarctica. Rev. Geophys., 50, RG1004, doi:10.1029/2011RG000363.

  • Bromwich, D. H., F. O. Otieno, K. M. Hines, K. W. Manning, and E. Shilo, 2013: Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic. J. Geophys. Res. Atmos., 118, 274292, doi:10.1029/2012JD018139.

    • Search Google Scholar
    • Export Citation
  • Cassano, E. N., J. M. Glisan, J. J. Cassano, W. J. Gutowski Jr., and M. W. Seefeldt, 2015: Self-organizing map analysis of widespread temperature extremes in Alaska and Canada. Climate Res., 62, 199218, doi:10.3354/cr01274.

    • Search Google Scholar
    • Export Citation
  • Coggins, J. H., and A. J. McDonald, 2015: The influence of the Amundsen Sea Low on the winds in the Ross Sea and surroundings: Insights from a synoptic climatology. J. Geophys. Res. Atmos., 120, 21672189, doi:10.1002/2014JD022830.

    • Search Google Scholar
    • Export Citation
  • Coggins, J. H., A. J. McDonald, G. Plank, M. Pannell, B. Jolly, S. Parsons, and T. Delany, 2013: SNOW-WEB: A new technology for Antarctic meteorological monitoring. Antarct. Sci., 25, 583599, doi:10.1017/S0954102013000011.

    • Search Google Scholar
    • Export Citation
  • Coggins, J. H., A. J. McDonald, and B. Jolly, 2014: Synoptic climatology of the Ross Ice Shelf and Ross Sea region of Antarctica: k-means clustering and validation. Int. J. Climatol., 34, 23302348, doi:10.1002/joc.3842.

    • Search Google Scholar
    • Export Citation
  • Genthon, C., D. Six, V. Favier, M. Lazzara, and L. Keller, 2011: Atmospheric temperature measurements biases on the Antarctic Plateau. J. Atmos. Oceanic Technol., 28, 15981605, doi:10.1175/JTECH-D-11-00095.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., D. H. Bromwich, and J. J. Cassano, 2003: Evaluation of Polar MM5 simulations of Antarctic atmospheric circulation. Mon. Wea. Rev., 131, 384411, doi:10.1175/1520-0493(2003)131<0384:EOPMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hewitson, B., and R. Crane, 2002: Self-organizing maps: Applications to synoptic climatology. Climate Res., 22, 1326, doi:10.3354/cr022013.

    • Search Google Scholar
    • Export Citation
  • Jolly, B., A. Willig, A. McDonald, M. Pannell, and G. Plank, 2013: SNOWWEB—Wirelessly connected weather stations in Antarctica. IEEE 38th Conf. on Local Computer Networks Workshops (LCN Workshops), Sydney, Australia, IEEE, 194–202, doi:10.1109/LCNW.2013.6758519.

  • Kohonen, T., 1990: The Self-Organizing Map. Proc. IEEE, 78, 14641480, doi:10.1109/5.58325.

  • Lawson, R. P., and A. Gettelman, 2014: Impact of Antarctic mixed-phase clouds on climate. Proc. Natl. Acad. Sci. USA, 111, 18 15618 161, doi:10.1073/pnas.1418197111.

    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., G. A. Weidner, L. M. Keller, J. E. Thom, and J. J. Cassano, 2012: Antarctic Automatic Weather Station Program: 30 years of polar observation. Bull. Amer. Meteor. Soc., 93, 15191537, doi:10.1175/BAMS-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A., D. Bromwich, J. Powers, and K. Manning, 2005: The climate of the McMurdo, Antarctica, region as represented by one year of forecasts from the Antarctic Mesoscale Prediction System. J. Climate, 18, 11741189, doi:10.1175/JCLI3336.1.

    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and D. H. Bromwich, 2011: Climate of West Antarctica and influence of marine air intrusions. J. Climate, 24, 4967, doi:10.1175/2010JCLI3522.1.

    • Search Google Scholar
    • Export Citation
  • Nigro, M. A., and J. J. Cassano, 2014a: Analysis of the Ross Ice Shelf airstream forcing mechanisms using self-organizing maps. Mon. Wea. Rev., 142, 47194734, doi:10.1175/MWR-D-14-00077.1.

    • Search Google Scholar
    • Export Citation
  • Nigro, M. A., and J. J. Cassano, 2014b: Identification of surface wind patterns over the Ross Ice Shelf, Antarctica, using self-organizing maps. Mon. Wea. Rev., 142, 23612378, doi:10.1175/MWR-D-13-00382.1.

    • Search Google Scholar
    • Export Citation
  • Nigro, M. A., J. J. Cassano, and M. W. Seefeldt, 2011: A weather-pattern-based approach to evaluate the Antarctic Mesoscale Prediction System (AMPS) forecasts: Comparison to automatic weather station observations. Wea. Forecasting, 26, 184198, doi:10.1175/2010WAF2222444.1.

    • Search Google Scholar
    • Export Citation
  • Nigro, M. A., J. J. Cassano, and S. L. Knuth, 2012a: Evaluation of Antarctic Mesoscale Prediction System (AMPS) cyclone forecasts using infrared satellite imagery. Antarct. Sci., 24, 183192, doi:10.1017/S0954102011000745.

    • Search Google Scholar
    • Export Citation
  • Nigro, M. A., J. J. Cassano, M. A. Lazzara, and L. M. Keller, 2012b: Case study of a barrier wind corner jet off the coast of the Prince Olav Mountains, Antarctica. Mon. Wea. Rev., 140, 20442063, doi:10.1175/MWR-D-11-00261.1.

    • Search Google Scholar
    • Export Citation
  • O’Connor, W. P., and D. H. Bromwich, 1988: Surface airflow around Windless Bight, Ross Island, Antarctica. Quart. J. Roy. Meteor. Soc., 114, 917938, doi:10.1002/qj.49711448205.

    • Search Google Scholar
    • Export Citation
  • O’Connor, W. P., D. H. Bromwich, and J. Carrasco, 1994: Cyclonically forced barrier winds along the Transantarctic Mountains near Ross Island. Mon. Wea. Rev., 122, 137150, doi:10.1175/1520-0493(1994)122<0137:CFBWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parish, T., and D. Bromwich, 1987: The surface windfield over the Antarctic ice sheets. Nature, 328, 5154, doi:10.1038/328051a0.

  • Parish, T., and D. Bromwich, 1997: On the forcing of seasonal changes in surface pressure over Antartica. J. Geophys. Res., 102, 13 78513 792, doi:10.1029/96JD02959.

    • Search Google Scholar
    • Export Citation
  • Parish, T., and D. Bromwich, 1998: A case study of Antarctic katabatic wind interaction with large-scale forcing. Mon. Wea. Rev., 126, 199209, doi:10.1175/1520-0493(1998)126<0199:ACSOAK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parish, T., and J. Cassano, 2003: Diagnosis of the katabatic wind influence on the wintertime Antarctic surface wind field from numerical simulations. Mon. Wea. Rev., 131, 11281139, doi:10.1175/1520-0493(2003)131<1128:DOTKWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parish, T., J. J. Cassano, and M. W. Seefeldt, 2006: Characteristics of the Ross Ice Shelf air stream as depicted in Antarctic Mesoscale Prediction System simulations. J. Geophys. Res., 111, D12109, doi:10.1029/2005JD006185.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., 2013: Mesoscale Meteorological Modeling. 3rd ed. International Geophysics Series, Vol. 98, Academic Press, 760 pp.

  • Powers, J., 2007: Numerical prediction of an Antarctic severe wind event with the Weather Research and Forecasting (WRF) model. Mon. Wea. Rev., 135, 31343157, doi:10.1175/MWR3459.1.

    • Search Google Scholar
    • Export Citation
  • Powers, J., K. W. Manning, D. H. Bromwich, J. J. Cassano, and A. M. Cayette, 2012: A decade of Antarctic science support through AMPS. Bull. Amer. Meteor. Soc., 93, 16991712, doi:10.1175/BAMS-D-11-00186.1.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., 2004: The dynamics of idealized katabatic flow over a moderate slope and ice shelf. Quart. J. Roy. Meteor. Soc., 130, 10231045, doi:10.1256/qj.03.24.

    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., R. B. Alley, and B. C. Hewitson, 2005: Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr., 29, 188212, doi:10.1080/789610199.

    • Search Google Scholar
    • Export Citation
  • Sammon, J. W., 1969: A nonlinear mapping for data structure analysis. IEEE Trans. Comput., C-18, 401409, doi:10.1109/T-C.1969.222678.

    • Search Google Scholar
    • Export Citation
  • Savage, M., and C. Stearns, 1985: Climate in the vicinity of Ross Island, Antarctica. Antarct. J. U.S., 20 (1), 19.

  • Scott, R. C., and D. Lubin, 2014: Mixed-phase cloud radiative properties over Ross Island, Antarctica: The influence of various synoptic-scale atmospheric circulation regimes. J. Geophys. Res. Atmos., 119, 67026723, doi:10.1002/2013JD021132.

    • Search Google Scholar
    • Export Citation
  • Seefeldt, M., and J. Cassano, 2008: An analysis of low-level jets in the greater Ross Ice Shelf region based on numerical simulations. Mon. Wea. Rev., 136, 41884205, doi:10.1175/2008MWR2455.1.

    • Search Google Scholar
    • Export Citation
  • Seefeldt, M., and J. Cassano, 2012: A description of the Ross Ice Shelf air stream (RAS) through the use of self-organizing maps (SOMs). J. Geophys. Res., 117, D09112, doi:10.1029/2011JD016857.

    • Search Google Scholar
    • Export Citation
  • Seefeldt, M., G. Tripoli, and C. Stearns, 2003: A high-resolution numerical simulation of the wind flow in the Ross Island region, Antarctica. Mon. Wea. Rev., 131, 435458, doi:10.1175/1520-0493(2003)131<0435:AHRNSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., and C. C. Lee, 2011: The self-organizing map in synoptic climatological research. Prog. Phys. Geogr., 35, 109119, doi:10.1177/0309133310397582.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., and N. P. M. van Lipzig, 2003: Factors controlling the near-surface wind field in Antarctica. Mon. Wea. Rev., 131, 733743., doi:10.1175/1520-0493(2003)131<0733:FCTNSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, A. B., D. H. Bromwich, and K. M. Hines, 2012: Evaluation of polar WRF forecasts on the Arctic system reanalysis domain: 2. Atmospheric hydrologic cycle. J. Geophys. Res., 117, D04107, doi:10.1029/2011JD016765.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 244 73 1
PDF Downloads 154 28 0