Hurricane Irene Sensitivity to Stratified Coastal Ocean Cooling

Greg Seroka Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Greg Seroka in
Current site
Google Scholar
PubMed
Close
,
Travis Miles Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Travis Miles in
Current site
Google Scholar
PubMed
Close
,
Yi Xu State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China

Search for other papers by Yi Xu in
Current site
Google Scholar
PubMed
Close
,
Josh Kohut Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Josh Kohut in
Current site
Google Scholar
PubMed
Close
,
Oscar Schofield Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Oscar Schofield in
Current site
Google Scholar
PubMed
Close
, and
Scott Glenn Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Scott Glenn in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cold wakes left behind by tropical cyclones (TCs) have been documented since the 1940s. Many questions remain, however, regarding the details of the processes creating these cold wakes and their in-storm feedbacks onto tropical cyclone intensity. This largely reflects a paucity of measurements within the ocean, especially during storms. Moreover, the bulk of TC research efforts have investigated deep ocean processes—where tropical cyclones spend the vast majority of their lifetimes—and very little attention has been paid to coastal ocean processes despite their critical importance to shoreline populations. Using Hurricane Irene (2011) as a case study, the impact of the cooling of a stratified coastal ocean on storm intensity, size, and structure is quantified. Significant ahead-of-eye-center cooling (at least 6°C) of the Mid-Atlantic Bight occurred as a result of coastal baroclinic processes, and operational satellite SST products and existing coupled ocean–atmosphere hurricane models did not capture this cooling. Irene’s sensitivity to the cooling is tested, and its intensity is found to be most sensitive to the cooling over all other tested WRF parameters. Further, including the cooling in atmospheric modeling mitigated the high storm intensity bias in predictions. Finally, it is shown that this cooling—not track, wind shear, or dry air intrusion—was the key missing contribution in modeling Irene’s rapid decay prior to New Jersey landfall. Rapid and significant intensity changes just before landfall can have substantial implications on storm impacts—wind damage, storm surge, and inland flooding—and thus, coastal ocean processes must be resolved in future hurricane models.

Denotes Open Access content.

Corresponding author address: G. S. Seroka, Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901. E-mail: greg.seroka@gmail.com

Abstract

Cold wakes left behind by tropical cyclones (TCs) have been documented since the 1940s. Many questions remain, however, regarding the details of the processes creating these cold wakes and their in-storm feedbacks onto tropical cyclone intensity. This largely reflects a paucity of measurements within the ocean, especially during storms. Moreover, the bulk of TC research efforts have investigated deep ocean processes—where tropical cyclones spend the vast majority of their lifetimes—and very little attention has been paid to coastal ocean processes despite their critical importance to shoreline populations. Using Hurricane Irene (2011) as a case study, the impact of the cooling of a stratified coastal ocean on storm intensity, size, and structure is quantified. Significant ahead-of-eye-center cooling (at least 6°C) of the Mid-Atlantic Bight occurred as a result of coastal baroclinic processes, and operational satellite SST products and existing coupled ocean–atmosphere hurricane models did not capture this cooling. Irene’s sensitivity to the cooling is tested, and its intensity is found to be most sensitive to the cooling over all other tested WRF parameters. Further, including the cooling in atmospheric modeling mitigated the high storm intensity bias in predictions. Finally, it is shown that this cooling—not track, wind shear, or dry air intrusion—was the key missing contribution in modeling Irene’s rapid decay prior to New Jersey landfall. Rapid and significant intensity changes just before landfall can have substantial implications on storm impacts—wind damage, storm surge, and inland flooding—and thus, coastal ocean processes must be resolved in future hurricane models.

Denotes Open Access content.

Corresponding author address: G. S. Seroka, Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901. E-mail: greg.seroka@gmail.com
Save
  • Avila, L. A., and J. Cangialosi, 2012: Tropical Cyclone Report: Hurricane Irene. National Hurricane Center Tropical Cyclone Rep. AL092011, 45 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL092011_Irene.pdf.]

  • Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98, 23 24523 263, doi:10.1029/93JD02370.

    • Search Google Scholar
    • Export Citation
  • Blumberg, A. F., and G. L. Mellor, 1987: A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models, N.S. Heaps, Ed., Amer. Geophys. Union, 1–16.

  • Brooks, D. A., 1983: The wake of Hurricane Allen in the western Gulf of Mexico. J. Phys. Oceanogr., 13, 117129, doi:10.1175/1520-0485(1983)013<0117:TWOHAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, B. R., and G. J. Hakim, 2013: Variability and predictability of a three-dimensional hurricane in statistical equilibrium. J. Atmos. Sci., 70, 18061820, doi:10.1175/JAS-D-12-0112.1.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., and J. L. Franklin, 2013: 2012 National Hurricane Center Forecast Verification Report. National Hurricane Center, 79 pp. [Available online at http://www.nhc.noaa.gov/verification/pdfs/Verification_2012.pdf.]

  • Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 14131426, doi:10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2002: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys. Oceanogr., 32, 240264, doi:10.1175/1520-0485(2002)032<0240:OTPIVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, S. W., and R. A. Anthes, 1979: The mutual response of the tropical cyclone and the ocean. J. Phys. Oceanogr., 9, 128135, doi:10.1175/1520-0485(1979)009<0128:TMROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., H. E. Hurlburt, O. M. Smedstad, G. R. Halliwell, P. J. Hogan, A. J. Wallcraft, R. Baraille, and R. Bleck, 2007: The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst., 65, 6083, doi:10.1016/j.jmarsys.2005.09.016.

    • Search Google Scholar
    • Export Citation
  • Cornillon, P., C. Gilman, L. Stramma, O. Brown, R. Evans, and J. Brown, 1987: Processing and analysis of large volumes of satellite-derived thermal infrared data. J. Geophys. Res., 92, 12 99313 002, doi:10.1029/JC092iC12p12993.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561579, doi:10.1175/1520-0485(2003)033<0561:TOBLBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, doi:10.1175/2007MWR2085.1.

    • Search Google Scholar
    • Export Citation
  • Dickey, T., and Coauthors, 1998: Upper-ocean temperature response to Hurricane Felix as measured by the Bermuda testbed mooring. Mon. Wea. Rev., 126, 11951201, doi:10.1175/1520-0493(1998)126<1195:UOTRTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665669, doi:10.1038/44326.

  • Emanuel, K. A., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104, doi:10.1146/annurev.earth.31.100901.141259.

  • Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 3747, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Fisher, E. L., 1958: Hurricanes and the sea-surface temperature field. J. Meteor., 15, 328333, doi:10.1175/1520-0469(1958)015<0328:HATSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Forristall, G. Z., R. C. Hamilton, and V. J. Cardone, 1977: Continental shelf currents in Tropical Storm Delia: Observations and theory. J. Phys. Oceanogr., 7, 532546, doi:10.1175/1520-0485(1977)007<0532:CSCITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fuglister, F. C., and L. V. Worthington, 1951: Some results of a multiple ship survey of the Gulf Stream. Tellus, 3, 114, doi:10.1111/j.2153-3490.1951.tb00771.x.

    • Search Google Scholar
    • Export Citation
  • Garau, B., S. Ruis, W. G. Zhang, A. Pascual, E. Heslop, J. Kerfoot, and J. Tintore, 2011: Thermal lag correction on Slocum CTD glider data. J. Atmos. Oceanic Technol., 28, 10651071, doi:10.1175/JTECH-D-10-05030.1.

    • Search Google Scholar
    • Export Citation
  • Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688704, doi:10.1175/2009MWR2976.1.

    • Search Google Scholar
    • Export Citation
  • Glenn, S., and Coauthors, 2016: Stratified coastal ocean interactions with tropical cyclones. Nat. Commun., 7, 10887, doi:10.1038/ncomms10887.

    • Search Google Scholar
    • Export Citation
  • Glenn, S., C. Jones, M. Twardowski, L. Bowers, J. Kerfoot, J. Kohut, D. Webb, and O. Schofield, 2008: Glider observations of sediment resuspension in a Middle Atlantic Bight fall transition storm. Limnol. Oceanogr., 53, 21802196, doi:10.4319/lo.2008.53.5_part_2.2180.

    • Search Google Scholar
    • Export Citation
  • Gould, W. J., and Coauthors, 2004: Argo profiling floats bring new era of in situ ocean observations. Eos, Trans. Amer. Geophys. Union, 85, 185191, doi:10.1029/2004EO190002.

    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2013: Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Wea. Rev., 141, 23082324, doi:10.1175/MWR-D-12-00274.1.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys., 227, 35953624, doi:10.1016/j.jcp.2007.06.016.

    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., L. K. Shay, J. K. Brewster, and W. J. Teague, 2011: Evaluation and sensitivity analysis of an ocean model response to Hurricane Ivan. Mon. Wea. Rev., 139, 921945, doi:10.1175/2010MWR3104.1.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting Model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137, 745765, doi:10.1175/2008MWR2220.1.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., R. Schlitz, R. C. Beardsley, B. Butman, and J. L. Chamberlin, 1982: The Middle Atlantic Bight cold pool: Evolution of the temperature structure during summer 1979. J. Phys. Oceanogr., 12, 10191029, doi:10.1175/1520-0485(1982)012<1019:TMABCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., and L. K. Shay, 2003: The role of oceanic mesoscale features on the tropical cyclone–induced mixed layer response: A case study. J. Phys. Oceanogr., 33, 649676, doi:10.1175/1520-0485(2003)33<649:TROOMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207, doi:10.1175/2009MWR2849.1.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2010: Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. J. Phys. Oceanogr., 40, 13201337, doi:10.1175/2010JPO4309.1.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2015: Enhanced wind-driven downwelling flow in warm oceanic eddy features during the intensification of Tropical Cyclone Isaac (2012): Observations and theory. J. Phys. Oceanogr., 45, 16671689, doi:10.1175/JPO-D-14-0176.1.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and G. R. Halliwell, 2011: The response of quasigeostrophic oceanic vortices to tropical cyclone forcing. J. Phys. Oceanogr., 41, 19651985, doi:10.1175/JPO-D-11-06.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and I. Ginis, 1991: The mutual response of a moving tropical cyclone and the ocean. Contrib. Atmos. Phys., 64, 125141.

  • Khain, A. P., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF Model with spectral bin microphysics. J. Atmos. Sci., 67, 365384, doi:10.1175/2009JAS3210.1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., B. Lynn, and J. Shpund, 2016: High resolution WRF simulations of Hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes. Atmos. Res., 167, 129145, doi:10.1016/j.atmosres.2015.07.014.

    • Search Google Scholar
    • Export Citation
  • Kim, H. S., C. Lozano, V. Tallapragada, D. Iredell, D. Sheinin, H. L. Tolman, V. M. Gerald, and J. Sims, 2014: Performance of ocean simulations in the coupled HWRF-HYCOM model. J. Atmos. Oceanic Technol., 31, 545559, doi:10.1175/JTECH-D-13-00013.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y., and S. S. Chen, 2014: Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Mon. Wea. Rev., 142, 19271945, doi:10.1175/MWR-D-13-00122.1.

    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182186, doi:10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, doi:10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, doi:10.1029/2008GL035815.

    • Search Google Scholar
    • Export Citation
  • Liu, B., H. Liu, L. Xie, C. Guan, and D. Zhao, 2011: A coupled atmosphere–wave–ocean modeling system simulation of the intensity of an idealized tropical cyclone. Mon. Wea. Rev., 139, 132152, doi:10.1175/2010MWR3396.1.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., and Coauthors, 2016: The sensitivity of Hurricane Irene to aerosols and ocean coupling: Simulations with WRF spectral bin microphysics. J. Atmos. Sci., 73, 467486, doi:10.1175/JAS-D-14-0150.1.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., and Coauthors, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323.

    • Search Google Scholar
    • Export Citation
  • Mayer, D. A., and H. O. Mofjeld, 1981: Near-inertial internal waves observed on the outer shelf in the Middle Atlantic Bight in the wake of Hurricane Belle. J. Phys. Oceanogr., 11, 87106, doi:10.1175/1520-0485(1981)011<0087:NIIWOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mehra, A., and I. Rivin, 2010: A real time ocean forecast system for the North Atlantic Ocean. Terr. Atmos. Oceanic Sci., 21, 211228, doi:10.3319/TAO.2009.04.16.01(IWNOP).

    • Search Google Scholar
    • Export Citation
  • Mei, W., C. Pasquero, and F. Primeau, 2012: The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett., 39, L07801, doi:10.1029/2011GL050765.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Miles, T., S. Glenn, and O. Schofield, 2013: Temporal and spatial variability in fall storm induced sediment resuspension on the Mid-Atlantic Bight. Cont. Shelf Res., 63, S36S49, doi:10.1016/j.csr.2012.08.006.

    • Search Google Scholar
    • Export Citation
  • Miles, T., G. N. Seroka, J. T. Kohut, O. Schofield, and S. M. Glenn, 2015: Glider observations and modeling of sediment transport in Hurricane Sandy. J. Geophys. Res. Ocean, 120, 17711791, doi:10.1002/2014JC010474.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. Thompson, 1972: The deepening of the wind-mixed layer. Geophys. Astrophys. Fluid Dyn., 4, 381404, doi:10.1080/03091927208236105.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, doi:10.1029/JC091iC07p08411.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, doi:10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., J. L. Frankling, M. DeMaria, L. K. Shay, and E. J. Gibney, 2010: Tropical cyclone intensity change before U.S. Gulf Coast landfall. Wea. Forecasting, 25, 13801396, doi:10.1175/2010WAF2222369.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and D. B. Chelton, 2010: Comparisons of daily sea surface temperature analyses for 2007–08. J. Climate, 23, 35453562, doi:10.1175/2010JCLI3294.1.

    • Search Google Scholar
    • Export Citation
  • Rhome, J. R., C. A. Sisko, and R. D. Knabb, 2006: On the calculation of vertical shear: An operational perspective. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 14A.4. [Available online at https://ams.confex.com/ams/27Hurricanes/techprogram/paper_108724.htm.]

  • Roemmich, D., and Coauthors, 2009: The Argo Program: Observing the global ocean with profiling floats. Oceanography, 22, 3443, doi:10.5670/oceanog.2009.36.

    • Search Google Scholar
    • Export Citation
  • Ruiz, S., L. Renault, B. Garau, and J. Tintoré, 2012: Underwater glider observations and modeling of an abrupt mixing event in the upper ocean. Geophys. Res. Lett., 39, L01603, doi:10.1029/2011GL050078.

    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and A. J. Schrader, 2000: The Automated Tropical Cyclone Forecasting System (version 3.2). Bull. Amer. Meteor. Soc., 81, 12311240, doi:10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanabia, E. R., and S. R. Jayne, 2014: Evolution of the upper-ocean thermal structure beneath Hurricanes Iselle and Julio (2014). 2014 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A11O-07.

  • Sanabia, E. R., B. S. Barrett, P. G. Black, S. Chen, and J. A. Cummings, 2013: Real-time upper-ocean temperature observations from aircraft during operational hurricane reconnaissance missions: AXBT demonstration project year one results. Wea. Forecasting, 28, 14041422, doi:10.1175/WAF-D-12-00107.1.

    • Search Google Scholar
    • Export Citation
  • Sanabia, E. R., S. R. Jayne, W. Swick, S. Chen, and J. Cummings, 2016: Variability in upper-ocean thermal structure beneath tropical cyclones as observed by air-deployed profiling floats. 32nd Conf. on Hurricanes and Tropical Meteorology, San Juan, Puerto Rico, Amer. Meteor. Soc., 3B.4. [Available online at https://ams.confex.com/ams/32Hurr/webprogram/Paper293996.html.]

  • Sanford, T. B., P. G. Black, J. R. Haustein, J. W. Feeney, G. Z. Forristall, and J. F. Price, 1987: Ocean response to a hurricane. Part I: Observations. J. Phys. Oceanogr., 17, 20652083, doi:10.1175/1520-0485(1987)017<2065:ORTAHP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. J. Atmos. Sci., 56, 642651, doi:10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schofield, O., and Coauthors, 2007: Slocum gliders: Robust and ready. J. F. Robot., 24, 473485, doi:10.1002/rob.20200.

  • Sessions, M. H., T. P. Barnett, and W. S. Wilson, 1976: The airborne expendable bathythermograph. Deep-Sea Res. Oceanogr. Abstr., 23, 779782, doi:10.1016/S0011-7471(76)80021-6.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20 22720 248, doi:10.1029/92JC01586.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Suda, K., 1943: Ocean Science. Kokin-Shoin, 770 pp.

  • Sutyrin, G. G., and E. A. Agrenich, 1979: Interaction of the boundary layers of the ocean and atmosphere in a tropical cyclone. Meteor. Gidrol., 2, 4556.

    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., and A. P. Khain, 1984: Effect of the ocean–atmosphere interaction on the intensity of a moving tropical cyclone. Atmos. Oceanic Phys., 20, 697703.

    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and Coauthors, 2011: Hurricane Weather Research and Forecasting (HWRF) model: 2011 scientific documentation. Developmental Testbed Center, 81 pp. [Available online at http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFScientificDocumentation_August2011.pdf.]

  • Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729, doi:10.1175/WAF-D-11-00085.1.

    • Search Google Scholar
    • Export Citation
  • Walker, N. D., R. R. Leben, and S. Balasubramanian, 2005: Hurricane-forced upwelling and chlorophyll α enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett., 32, L18610, doi:10.1029/2005GL023716.

    • Search Google Scholar
    • Export Citation
  • Wilkin, J. L., and E. J. Hunter, 2013: An assessment of the skill of real-time models of Mid-Atlantic Bight continental shelf circulation. J. Geophys. Res. Ocean, 118, 29192933, doi:10.1002/jgrc.20223.

    • Search Google Scholar
    • Export Citation
  • Zambon, J. B., R. He, and J. C. Warner, 2014a: Investigation of Hurricane Ivan using the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) model. Ocean Dyn., 64, 15351554, doi:10.1007/s10236-014-0777-7.

    • Search Google Scholar
    • Export Citation
  • Zambon, J. B., R. He, and J. C. Warner, 2014b: Tropical to extratropical: Marine environmental changes associated with Superstorm Sandy prior to its landfall. Geophys. Res. Lett., 41, 89358943, doi:10.1002/2014GL061357.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1476 261 31
PDF Downloads 715 133 6