Mesoscale Hybrid Data Assimilation System based on JMA Nonhydrostatic Model

Kosuke Ito University of the Ryukyus, Nishihara, and Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Kosuke Ito in
Current site
Google Scholar
PubMed
Close
,
Masaru Kunii Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Masaru Kunii in
Current site
Google Scholar
PubMed
Close
,
Takuya Kawabata Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Takuya Kawabata in
Current site
Google Scholar
PubMed
Close
,
Kazuo Saito Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Kazuo Saito in
Current site
Google Scholar
PubMed
Close
,
Kazumasa Aonashi Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Kazumasa Aonashi in
Current site
Google Scholar
PubMed
Close
, and
Le Duc Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Search for other papers by Le Duc in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper discusses the benefits of using a hybrid ensemble Kalman filter and four-dimensional variational (4D-Var) data assimilation (DA) system rather than a 4D-Var system employing the National Meteorological Center (NMC, now known as NCEP) method (4D-Var-Bnmc) to predict severe weather events. An adjoint-based 4D-Var system was employed with a background error covariance matrix constructed from the NMC method and perturbations in a local ensemble transform Kalman filter system. The DA systems are based on the Japan Meteorological Agency’s nonhydrostatic model. To reduce the sampling noise, three types of implementation (the spatial localization, spectral localization, and neighboring ensemble approaches) were tested. The assimilation of a pseudosingle observation of sea level pressure located at a tropical cyclone (TC) center yielded analysis increments physically consistent with what is expected of a mature TC in the hybrid systems at the beginning of the assimilation window, whereas analogous experiments performed using the 4D-Var-Bnmc system did not. At the end, the structures of the 4D-Var-based increments became similar to one another, while the analysis increment by the 4D-Var-Bnmc system was broad in the horizontal direction. Realistic DA experiments showed that all of the hybrid systems provided initial conditions that yielded more accurate TC track and intensity forecasts than those achievable by the 4D-Var-Bnmc system. The hybrid systems also yielded some statistically significant improvements in forecasting local heavy rainfall events in terms of fraction skill scores when a 160 km × 160 km window size was used. The overall skills of the hybrid systems were relatively independent of the choice of implementation.

Denotes Open Access content.

Corresponding author address: Kosuke Ito, Department of Physics and Earth Sciences, University of the Ryukyus. 1 Sembaru, Nishihara, Okinawa 903-0213, Japan. E-mail: itokosk@sci.u-ryukyu.ac.jp

This article is included in the Intercomparisons of 4D-Variational Assimilation and the Ensemble Kalman Filter special collection.

Abstract

This paper discusses the benefits of using a hybrid ensemble Kalman filter and four-dimensional variational (4D-Var) data assimilation (DA) system rather than a 4D-Var system employing the National Meteorological Center (NMC, now known as NCEP) method (4D-Var-Bnmc) to predict severe weather events. An adjoint-based 4D-Var system was employed with a background error covariance matrix constructed from the NMC method and perturbations in a local ensemble transform Kalman filter system. The DA systems are based on the Japan Meteorological Agency’s nonhydrostatic model. To reduce the sampling noise, three types of implementation (the spatial localization, spectral localization, and neighboring ensemble approaches) were tested. The assimilation of a pseudosingle observation of sea level pressure located at a tropical cyclone (TC) center yielded analysis increments physically consistent with what is expected of a mature TC in the hybrid systems at the beginning of the assimilation window, whereas analogous experiments performed using the 4D-Var-Bnmc system did not. At the end, the structures of the 4D-Var-based increments became similar to one another, while the analysis increment by the 4D-Var-Bnmc system was broad in the horizontal direction. Realistic DA experiments showed that all of the hybrid systems provided initial conditions that yielded more accurate TC track and intensity forecasts than those achievable by the 4D-Var-Bnmc system. The hybrid systems also yielded some statistically significant improvements in forecasting local heavy rainfall events in terms of fraction skill scores when a 160 km × 160 km window size was used. The overall skills of the hybrid systems were relatively independent of the choice of implementation.

Denotes Open Access content.

Corresponding author address: Kosuke Ito, Department of Physics and Earth Sciences, University of the Ryukyus. 1 Sembaru, Nishihara, Okinawa 903-0213, Japan. E-mail: itokosk@sci.u-ryukyu.ac.jp

This article is included in the Intercomparisons of 4D-Variational Assimilation and the Ensemble Kalman Filter special collection.

Save
  • Aonashi, K., K. Okamoto, M. Yamaguchi, and S. Origuchi, 2013: Dual scale neighboring ensemble approach for the cloud-resolving model ensemble variational assimilation. Sixth WMO Symp. on Data Assimilation, College Park, MD, University of Maryland, 7.4. [Available online at http://das6.umd.edu/program/Daily/abs/7.4-Aonashi_Kazumasa.pdf.]

  • Bishop, C. H., D. Hodyss, P. Steinle, H. Sims, A. M. Clayton, A. C. Lorenc, D. M. Barker, and M. Buehner, 2011: Efficient ensemble covariance localization in variational data assimilation. Mon. Wea. Rev., 139, 573580, doi:10.1175/2010MWR3405.1.

    • Search Google Scholar
    • Export Citation
  • Bonavita, M., L. Isaksen, and E. Hólm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 15401559, doi:10.1002/qj.1899.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 10131043, doi:10.1256/qj.04.15.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., and M. Charron, 2007: Spectral and spatial localization of background‐error correlations for data assimilation. Quart. J. Roy. Meteor. Soc., 133, 615630, doi:10.1002/qj.50.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 15501566, doi:10.1175/2009MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 15671586, doi:10.1175/2009MWR3158.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-C., S.-C. Yang, and C. Keppenne, 2014: Applications of the mean recentering scheme to improve typhoon track prediction: A case study of Typhoon Nanmadol (2011). J. Meteor. Soc. Japan, 92, 559584, doi:10.2151/jmsj.2014-604.

    • Search Google Scholar
    • Export Citation
  • Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 14451461, doi:10.1002/qj.2054.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J. N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D‐Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, doi:10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Duc, L., K. Saito, and H. Seko, 2013: Spatial-temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18171, doi:10.3402/tellusa.v65i0.18171.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2009: Neighborhood verification: A strategy for rewarding close forecasts. Wea. Forecasting, 24, 14981510, doi:10.1175/2009WAF2222251.1.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R., 1995: Tropical cyclone motion. Global Perspectives on Tropical Cyclones, WMO/TD-693, WMO, 106–197.

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688704, doi:10.1175/2009MWR2976.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 29052919, doi:10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Honda, Y., 2010: Tangent linear and adjoint models (in Japanese). Separate volume of annual report of JMA-NPD, Vol. 56, 25–30.

  • Honda, Y., and K. Sawada, 2009: Upgrade of the operational mesoscale 4D-Var system at the Japan Meteorological Agency. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling 2009, J. Côté, Ed., Rep. 39, 2 pp. [Available online at http://www.wcrp-climate.org/WGNE/BlueBook/2009/individual-articles/01_Honda_Yuki_jnova.pdf.]

  • Honda, Y., M. Nishijima, K. Koizumi, Y. Ohta, K. Tamiya, T. Kawabata, and T. Tsuyuki, 2005: A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results. Quart. J. Roy. Meteor. Soc., 131, 34653475, doi:10.1256/qj.05.132.

    • Search Google Scholar
    • Export Citation
  • Hunt, B., and Coauthors, 2004: Four‐dimensional ensemble Kalman filtering. Tellus, 56A, 273277, doi:10.1111/j.1600-0870.2004.00066.x.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. MRI Tech. Rep. 28, doi:10.11483/mritechrepo.28.

  • Ishida, J., 2007: Development of a hybrid terrain-following vertical coordinate for JMA non-hydrostatic model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling 2007, J. Côté, Ed., Rep. 37, WMO/TD 1397, 2 pp. [Available online at http://www.wcrp-climate.org/WGNE/BlueBook/2007/individual-articles/03_Ishida_Junichi_wgne_zhybrid.pdf.]

  • Ito, K., T. Kuroda, K. Saito, and A. Wada, 2015: Forecasting a large number of tropical cyclone intensities around Japan using a high-resolution atmosphere–ocean coupled model. Wea. Forecasting, 30, 793808, doi:10.1175/WAF-D-14-00034.1.

    • Search Google Scholar
    • Export Citation
  • JMA, 2013: Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Accessed 19 July 2016. [Available online at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2013-nwp/index.htm.]

  • Johnson, C., B. J. Hoskins, and N. K. Nichols, 2005: A singular vector perspective of 4D-Var: Filtering and interpolation. Quart. J. Roy. Meteor. Soc., 131, 119, doi:10.1256/qj.03.231.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-Hybrid results. Mon. Wea. Rev., 143, 433451, doi:10.1175/MWR-D-13-00351.1.

    • Search Google Scholar
    • Export Citation
  • Kuhl, D. D., T. E. Rosmond, C. H. Bishop, J. McLay, and N. L. Baker, 2013: Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS-AR data assimilation framework. Mon. Wea. Rev., 141, 27402758, doi:10.1175/MWR-D-12-00182.1.

    • Search Google Scholar
    • Export Citation
  • Kunii, M., 2014: Mesoscale data assimilation for a local severe rainfall event with the NHM-LETKF system. Wea. Forecasting, 29, 10931105, doi:10.1175/WAF-D-13-00032.1.

    • Search Google Scholar
    • Export Citation
  • Liu, D. C., and J. Nocedal, 1989: On the limited memory BFGS method for large scale optimization. Math. Program., 45, 503528, doi:10.1007/BF01589116.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003a: Modelling of error covariances by 4D-Var data assimilation. Quart. J. Roy. Meteor. Soc., 129, 31673182, doi:10.1256/qj.02.131.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003b: The potential of the ensemble Kalman filter for NWP—A comparison with 4D‐Var. Quart. J. Roy. Meteor. Soc., 129, 31833203, doi:10.1256/qj.02.132.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and S. Yamane, 2007: Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. Mon. Wea. Rev., 135, 38413861, doi:10.1175/2007MWR1873.1.

    • Search Google Scholar
    • Export Citation
  • Nagata, K., 2011: Quantitative precipitation estimation and quantitative precipitation forecasting by the Japan meteorological agency. RSMC Tokyo–Typhoon Center Tech. Rev., 13, 3750. [Available online at http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/techrev/text13-2.pdf.]

  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Pan, Y., K. Zhu, M. Xue, X. Wang, M. Hu, S. G. Benjamin, S. S. Weygandt, and J. S. Whitaker, 2014: A GSI-based coupled EnSRF–En3DVar hybrid data assimilation system for the operational rapid refresh model: Tests at a reduced resolution. Mon. Wea. Rev., 142, 37563780, doi:10.1175/MWR-D-13-00242.1.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Poterjoy, J., and F. Zhang, 2014: Intercomparison and coupling of ensemble and four-dimensional variational data assimilation methods for the analysis and forecasting of Hurricane Karl (2010). Mon. Wea. Rev., 142, 33473364, doi:10.1175/MWR-D-13-00394.1.

    • Search Google Scholar
    • Export Citation
  • Saito, K., 2012: The JMA Nonhydrostatic model and its applications to operation and research. Atmospheric Model Applications, I. Yucel, Ed., InTech, 85–110, doi:10.5772/35368.

  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, doi:10.1175/MWR3120.1.

    • Search Google Scholar
    • Export Citation
  • Saito, K., T. Kuroda, M. Kunii, and N. Kohno, 2010: Numerical simulation of Myanmar cyclone Nargis and the associated storm surge. Part II: Ensemble prediction. J. Meteor. Soc. Japan, 88, 547570, doi:10.2151/jmsj.2010-316.

    • Search Google Scholar
    • Export Citation
  • Saito, K., M. Hara, M. Kunii, H. Seko, and M. Yamaguchi, 2011: Comparison of initial perturbation methods for the mesoscale ensemble prediction system of the Meteorological Research Institute for the WWRP Beijing 2008 Olympics Research and Development Project (B08RDP). Tellus, 63A, 445467, doi:10.1111/j.1600-0870.2010.00509.x.

    • Search Google Scholar
    • Export Citation
  • Saito, K., H. Seko, M. Kunii, and T. Miyoshi, 2012: Effect of lateral boundary perturbations on the breeding method and the local ensemble transform Kalman filter for mesoscale ensemble prediction. Tellus, 64A, 11594, doi:10.3402/tellusa.v64i0.11594.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Z. Liu, 2014: Convection-permitting forecasts initialized with continuously cycling limited-area 3DVAR, ensemble Kalman filter, and “hybrid” variational–ensemble data assimilation systems. Mon. Wea. Rev., 142, 716738, doi:10.1175/MWR-D-13-00100.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., Z. Liu, X.-Y. Huang, Y.-H. Kuo, and C.-T. Fong, 2013: Comparing limited-area 3DVAR and hybrid variational-ensemble data assimilation methods for typhoon track forecasts: Sensitivity to outer loops and vortex relocation. Mon. Wea. Rev., 141, 43504372, doi:10.1175/MWR-D-13-00028.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Snyder, and T. M. Hamill, 2007: On the theoretical equivalence of differently proposed ensemble–3DVAR hybrid analysis schemes. Mon. Wea. Rev., 135, 222227, doi:10.1175/MWR3282.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

  • Wu, C.-C., J.-H. Chen, P.-H. Lin, and K.-H. Chou, 2007: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 26112626, doi:10.1175/JAS3974.1.

    • Search Google Scholar
    • Export Citation
  • Yokota, S., K. Masaru, A. Kazumasa, and O. Seiji, 2016: Comparison between four-dimensional LETKF and ensemble-based variational data assimilation with observation localization. SOLA, 12, 8085, doi:10.2151/sola.2016-019.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and F. Zhang, 2012: E4DVar: Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model. Mon. Wea. Rev., 140, 587600, doi:10.1175/MWR-D-11-00023.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 669 164 13
PDF Downloads 290 77 6