Observations of the Structure and Evolution of Hurricane Edouard (2014) during Intensity Change. Part I: Relationship between the Thermodynamic Structure and Precipitation

Jonathan Zawislak Florida International University, Miami, Florida

Search for other papers by Jonathan Zawislak in
Current site
Google Scholar
PubMed
Close
,
Haiyan Jiang Florida International University, Miami, Florida

Search for other papers by Haiyan Jiang in
Current site
Google Scholar
PubMed
Close
,
George R. Alvey III University of Utah, Salt Lake City, Utah

Search for other papers by George R. Alvey III in
Current site
Google Scholar
PubMed
Close
,
Edward J. Zipser University of Utah, Salt Lake City, Utah

Search for other papers by Edward J. Zipser in
Current site
Google Scholar
PubMed
Close
,
Robert F. Rogers NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Robert F. Rogers in
Current site
Google Scholar
PubMed
Close
,
Jun A. Zhang NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School for Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by Jun A. Zhang in
Current site
Google Scholar
PubMed
Close
, and
Stephanie N. Stevenson University at Albany, State University of New York, Albany, New York

Search for other papers by Stephanie N. Stevenson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The structural evolution of the inner core and near environment throughout the life cycle of Hurricane Edouard (2014) is examined using a synthesis of airborne and satellite measurements. This study specifically focuses on the precipitation evolution and thermodynamic changes that occur on the vortex scale during four periods: when Edouard was a slowly intensifying tropical storm, another while a rapidly intensifying hurricane, during the initial stages of weakening after reaching peak intensity, and later while experiencing moderate weakening in the midlatitudes. Results suggest that, in a shear-relative framework, a wavenumber-1 asymmetry exists whereby the downshear quadrants consistently exhibit the greatest precipitation coverage and highest relative humidity, while the upshear quadrants (especially upshear right) exhibit relatively less precipitation coverage and lower humidity, particularly in the midtroposphere. Whether dynamically or precipitation driven, the relatively dry layers upshear appear to be ubiquitously caused by subsidence. The precipitation and thermodynamic asymmetry is observed throughout the intensification and later weakening stages, while a consistently more symmetric distribution is only observed when Edouard reaches peak intensity. The precipitation distribution, which is also discussed in the context of the boundary layer thermodynamic properties, is intimately linked to the thermodynamic symmetry, which becomes greater as the frequency, areal coverage, and, in particular, rainfall rate increases upshear. Although shear is generally believed to be detrimental to intensification, observations in Edouard also indicate that subsidence warming from mesoscale downdrafts in the low- to midtroposphere very near the center may have contributed favorably to organization early in the intensification stage.

Corresponding author address: Jonathan Zawislak, Dept. of Earth and Environment, Florida International University, 11200 SW 8th St., AHC-5, Rm. 360, Miami, FL 33199. E-mail: jzawisla@fiu.edu

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Abstract

The structural evolution of the inner core and near environment throughout the life cycle of Hurricane Edouard (2014) is examined using a synthesis of airborne and satellite measurements. This study specifically focuses on the precipitation evolution and thermodynamic changes that occur on the vortex scale during four periods: when Edouard was a slowly intensifying tropical storm, another while a rapidly intensifying hurricane, during the initial stages of weakening after reaching peak intensity, and later while experiencing moderate weakening in the midlatitudes. Results suggest that, in a shear-relative framework, a wavenumber-1 asymmetry exists whereby the downshear quadrants consistently exhibit the greatest precipitation coverage and highest relative humidity, while the upshear quadrants (especially upshear right) exhibit relatively less precipitation coverage and lower humidity, particularly in the midtroposphere. Whether dynamically or precipitation driven, the relatively dry layers upshear appear to be ubiquitously caused by subsidence. The precipitation and thermodynamic asymmetry is observed throughout the intensification and later weakening stages, while a consistently more symmetric distribution is only observed when Edouard reaches peak intensity. The precipitation distribution, which is also discussed in the context of the boundary layer thermodynamic properties, is intimately linked to the thermodynamic symmetry, which becomes greater as the frequency, areal coverage, and, in particular, rainfall rate increases upshear. Although shear is generally believed to be detrimental to intensification, observations in Edouard also indicate that subsidence warming from mesoscale downdrafts in the low- to midtroposphere very near the center may have contributed favorably to organization early in the intensification stage.

Corresponding author address: Jonathan Zawislak, Dept. of Earth and Environment, Florida International University, 11200 SW 8th St., AHC-5, Rm. 360, Miami, FL 33199. E-mail: jzawisla@fiu.edu

This article is included in the NASA Hurricane Severe Storm Sentinel (HS3) special collection.

Save
  • Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau Jr., 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, D18206, doi:10.1029/2009JD013411.

    • Search Google Scholar
    • Export Citation
  • Alvey, G. R., III, J. Zawislak, and E. Zipser, 2015: Precipitation properties observed during tropical cyclone intensity change. Mon. Wea. Rev., 143, 4476–4492, doi:10.1175/MWR-D-15-0065.1.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54, 703–724, doi:10.1175/1520-0469(1997)054<0703:TEORFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 2291–2312, doi:10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15, 192–207, doi:10.1175/1520-0434(2000)015<0192:CIASFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 2007–2037, doi:10.1175/2009MWR3135.1.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., J. A. Sippel, and D. S. Nolan, 2012: The impact of dry midlevel air on hurricane intensity in idealized simulations with no mean flow. J. Atmos. Sci., 69, 236–257, doi:10.1175/JAS-D-10-05007.1.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345–363, doi:10.1175/BAMS-D-11-00232.1.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., P. A. Newman, and G. M. Heymsfield, 2016: NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00186.1, in press.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531–550, doi:10.1175/JAS-D-14-0097.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 3190–3208, doi:10.1175/MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 1550–1561, doi:10.1175/1520-0493(2000)128<1550:SOITHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cram, T., J. Persing, M. Montgomery, and S. Braun, 2007: A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high- resolution simulation of Hurricane Bonnie (1998). J. Atmos. Sci., 64, 1835–1856, doi:10.1175/JAS3921.1.

    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., R. A. Houze Jr., and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 2713–2732, doi:10.1175/JAS-D-13-0298.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2088, doi:10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531–543, doi:10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • Dolling, K., and G. M. Barnes, 2012: Warm-core formation in Tropical Storm Humberto (2001). Mon. Wea. Rev., 140, 1177–1190, doi:10.1175/MWR-D-11-00183.1.

    • Search Google Scholar
    • Export Citation
  • Dolling, K., and G. M. Barnes, 2014: The evolution of Hurricane Humberto (2001). J. Atmos. Sci., 71, 1276–1291, doi:10.1175/JAS-D-13-0164.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353–365, doi:10.1175/BAMS-85-3-353.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., C. Thorncroft, and C. S. Velden, 2014: The tropical cyclone diurnal cycle of mature hurricanes. Mon. Wea. Rev., 142, 3900–3919, doi:10.1175/MWR-D-13-00191.1.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., 2013: Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa. Mon. Wea. Rev., 141, 4256–4268, doi:10.1175/MWR-D-13-00021.1.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 209–227, doi:10.1175/MWR-2849.1.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044–2061, doi:10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700, doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633–654, doi:10.1175/2009JAS3119.1.

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze Jr., 2011: Vertical structure of hurricane eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 68, 1637–1652, doi:10.1175/2011JAS3578.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293–344, doi:10.1175/2009MWR2989.1.

  • Jiang, H., 2012: The relationship between tropical cyclone intensity change and the strength of inner-core convection. Mon. Wea. Rev., 140, 1164–1176, doi:10.1175/MWR-D-11-00134.1.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821–851, doi:10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones on the North Atlantic basin. Wea. Forecasting, 18, 1093–1108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 1374–1396, doi:10.1175/WAF-D-15-0032.1.

    • Search Google Scholar
    • Export Citation
  • Kelley, O. A., J. Stout, and J. B. Halverson, 2004: Tall precipitation cells in tropical cyclones eyewalls are associated with tropical cyclone intensification. Geophys. Res. Lett., 31, L24112, doi:10.1029/2004GL021616.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2015: Subsidence warming as an underappreciated ingredient in tropical cyclogenesis. Part I: Aircraft observations. J. Atmos. Sci., 72, 4237–4260, doi:10.1175/JAS-D-14-0366.1.

    • Search Google Scholar
    • Export Citation
  • Kieper, M., and H. Jiang, 2012: Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern identified from passive microwave measurements. Geophys. Res. Lett., 39, L13804, doi:10.1029/2012GL052115.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 2260–2270, doi:10.1175/1520-0493(2002)130<2260:DHVIFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 1079–1090, doi:10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 2196–2209, doi:10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., and L. K. Shay, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305–323, doi:10.1175/1520-0477(1998)079<0305:LTCFPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., R. A. Houze Jr., and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919–942, doi:10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 1678–1687, doi:10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 3869–3885, doi:10.1175/2010MWR3378.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 2493–2509, doi:10.1175/JAS3291.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Dodge, D. Vollaro, K. L. Corbosiero, and F. Marks Jr., 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341–354, doi:10.1175/JAS3591.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. M. Romps, D. Vollaro, and L. Nguyen, 2012: CAPE in tropical cyclones. J. Atmos. Sci., 69, 2452–2463, doi:10.1175/JAS-D-11-0254.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., J. Frank, and D. Vollaro, 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 1048–1060, doi:10.1175/MWR-D-12-00135.1.

    • Search Google Scholar
    • Export Citation
  • NASA GSFC, 2010: Precipitation Processing System (PPS) Algorithm Theoretical Basis Document (ATBD): NASA GPM level 1C algorithms, version 1.0. NASA GSFC, Greenbelt, MD, 39 pp. [Available online at https://pmm.nasa.gov/sites/default/files/document_files/L1C_ATBD_v1.pdf.]

  • Nguyen, L. T., and J. Molinari, 2012: Rapid intensification of a sheared, fast-moving hurricane over the Gulf Stream. Mon. Wea. Rev., 140, 3361–3378, doi:10.1175/MWR-D-11-00293.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 2717–2745, doi:10.1175/1520-0469(2003)060<2717:NTPTBH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 3377–3405, doi:10.1175/JAS3988.1.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3–40, doi:10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369–379.

  • Reasor, P. D., and M. D. Eastin, 2012: Rapidly intensifying Hurricane Guillermo (1997). Part II: Resilience in shear. Mon. Wea. Rev., 140, 425–444, doi:10.1175/MWR-D-11-00080.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603–631, doi:10.1175/2008MWR2487.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 2949–2969, doi:10.1175/MWR-D-12-00334.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 3163–3188, doi:10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Rodgers, E. B., W. S. Olson, V. M. Karyampudi, and H. F. Pierce, 1998: Satellite-derived latent heating distribution and environmental influences in Hurricane Opal (1995). Mon. Wea. Rev., 126, 1229–1247, doi:10.1175/1520-0493(1998)126<1229:SDLHDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 44–70, doi:10.1175/2009JAS3122.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2006: The Intensity Forecasting Experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 1523–1537, doi:10.1175/BAMS-87-11-1523.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013a: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970–2991, doi:10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2013b: NOAA’s Hurricane Intensity Forecasting Experiment: A progress report. Bull. Amer. Meteor. Soc., 94, 859–882, doi:10.1175/BAMS-D-12-00089.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and J. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536–562, doi:10.1175/MWR-D-14-00175.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., J. Zhang, J. Zawislak, H. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 3355–3376, doi:10.1175/MWR-D-16-0017.1.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., C. S. Velden, J. Kaplan, J. P. Kossin, and A. J. Wimmers, 2015: Improvements in the probabilistic prediction of tropical cyclone rapid intensification with passive microwave observations. Wea. Forecasting, 30, 1016–1038, doi:10.1175/WAF-D-14-00109.1.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and D. T. Shea, 2013: Evaluation WWLLN performance relative to TRMM/LIS. Geophys. Res. Lett., 40, 2344–2348, doi:10.1002/grl.50428.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687–1697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197–1223, doi:10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper-ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20 227–20 248, doi:10.1029/92JC01586.

    • Search Google Scholar
    • Export Citation
  • Shu, S., and L. Wu, 2009: Analysis of the influence of the Saharan air layer on tropical cyclone intensity using AIRS/Aqua data. Geophys. Res. Lett., 36, L09809, doi:10.1029/2009GL037634.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., S. A. Braun, and C.-L. Shie, 2011: Environmental influences on the strength of Tropical Storm Debby (2006). J. Atmos. Sci., 68, 2557–2581, doi:10.1175/2011JAS3648.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254–273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 1657–1680, doi:10.1175/JAS-D-11-010.1.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The convective evolution and rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 142, 4364–4380, doi:10.1175/MWR-D-14-00078.1.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and S. F. Abarca, 2016: Lightning in eastern North Pacific tropical cyclones: A comparison to the North Atlantic. Mon. Wea. Rev., 144, 225–239, doi:10.1175/MWR-D-15-0276.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2014: National Hurricane Center tropical cyclone report: Hurricane Edouard. Rep. AL062014, National Hurricane Center, 19 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL062014_Edouard.pdf.]

  • Susca-Lopata, G., J. Zawislak, E. Zipser, and R. Rogers, 2015: The role of observed environmental conditions and precipitation evolution in the rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 143, 2207–2223, doi:10.1175/MWR-D-14-00283.1.

    • Search Google Scholar
    • Export Citation
  • Tao, C., and H. Jiang, 2015: Distributions of shallow to very deep precipitation–convection in rapidly intensifying tropical cyclones. J. Climate, 28, 8791–8824, doi:10.1175/JCLI-D-14-00448.1.

    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR Earth Observing Laboratory, 2015: HS3 2014 Global Hawk dropsonde data, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 27 April 2015, doi:10.5065/D6GB2243. [Available online at https://data.eol.ucar.edu/dataset/348.004.]

  • Uhlhorn, E. W., B. W. Klotz, T. Vukicevic, P. D. Reasor, and R. F. Rogers, 2014: Observed hurricane wind speed asymmetries and relationships to motion and environmental shear. Mon. Wea. Rev., 142, 1290–1311, doi:10.1175/MWR-D-13-00249.1.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., 2010: Formation of the hurricane eye. Ph.D. dissertation, Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO, 538 pp.

  • Wentz, F. J., C. L. Gentemann, D. K. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847–850, doi:10.1126/science.288.5467.847.

    • Search Google Scholar
    • Export Citation
  • Young, K., T. Hock, and C. Martin, 2016: HS3-2014 dropsonde data quality report. National Center for Atmospheric Research, Earth Observing Laboratory, 11 pp. [Available online at http://data.eol.ucar.edu/datafile/nph-get/348.004/readme.V2.HS3-2014.GHdropsonde.pdf.]

  • Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 2789–2809, doi:10.1175/JAS-D-13-0314.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, doi:10.1029/2012GL052355.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and L. Zhu, 2012: Roles of upper-level processes in tropical cyclogenesis. Geophys. Res. Lett., 39, L17804, doi:10.1029/2012GL052355.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks Jr., 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 3968–3984, doi:10.1175/MWR-D-12-00335.1.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 1568–1589, doi:10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1329 582 260
PDF Downloads 440 130 8