A Lightning Parameterization for the ECMWF Integrated Forecasting System

Philippe Lopez European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Philippe Lopez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new parameterization able to diagnose lightning flash densities is proposed for the ECMWF Integrated Forecasting System, including its tangent-linear and adjoint versions. Total lightning densities are expressed as a function of hydrometeors contents, convective available potential energy, and cloud-base height output by the convective parameterization. Potential future applications range from the computation of NOx emissions by lightning in atmospheric chemistry models, severe convection forecasting, and data assimilation. In this study, a decade-long experiment is used to calibrate the simulated global annual mean flash density against the LIS/Optical Transient Detector (OTD) climatological value. On the seasonal and continental scales, the new parameterization is shown to agree well with the LIS/OTD observations. In forecast mode, output lightning densities are found to be almost independent of the horizontal resolution used in the model. Decade-long experiments also show that the new parameterization gives better results overall than the main existing lightning parameterizations designed for global models. Sensitivity experiments using its adjoint version are also performed to assess its potential for the future assimilation of lightning observations in the ECMWF 4D-Var system.

Corresponding author address: Philippe Lopez, ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom. E-mail: philippe.lopez@ecmwf.int

Abstract

A new parameterization able to diagnose lightning flash densities is proposed for the ECMWF Integrated Forecasting System, including its tangent-linear and adjoint versions. Total lightning densities are expressed as a function of hydrometeors contents, convective available potential energy, and cloud-base height output by the convective parameterization. Potential future applications range from the computation of NOx emissions by lightning in atmospheric chemistry models, severe convection forecasting, and data assimilation. In this study, a decade-long experiment is used to calibrate the simulated global annual mean flash density against the LIS/Optical Transient Detector (OTD) climatological value. On the seasonal and continental scales, the new parameterization is shown to agree well with the LIS/OTD observations. In forecast mode, output lightning densities are found to be almost independent of the horizontal resolution used in the model. Decade-long experiments also show that the new parameterization gives better results overall than the main existing lightning parameterizations designed for global models. Sensitivity experiments using its adjoint version are also performed to assess its potential for the future assimilation of lightning observations in the ECMWF 4D-Var system.

Corresponding author address: Philippe Lopez, ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom. E-mail: philippe.lopez@ecmwf.int
Save
  • Allen, D. J., and K. E. Pickering, 2002: Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J. Geophys. Res., 107, 4711, doi:10.1029/2002JD002066.

    • Search Google Scholar
    • Export Citation
  • Anderson, G., and D. Klugmann, 2014: A European lightning density analysis using 5 years of ATDnet data. Nat. Hazards Earth Syst. Sci., 14, 815–829, doi:10.5194/nhess-14-815-2014.

    • Search Google Scholar
    • Export Citation
  • Barthe, C., and J.-P. Pinty, 2007: Simulation of electrified storms with comparison of the charge structure and lightning efficiency. J. Geophys. Res., 112, D19204, doi:10.1029/2006JD008241.

    • Search Google Scholar
    • Export Citation
  • Barthe, C., M. Chong, J.-P. Pinty, C. Bovalo, and J. Escobar, 2012: CELLS v1.0: Updated and parallelized version of an electrical scheme to simulate multiple electrified clouds and flashes over large domains. Geosci. Model Dev., 5, 167–184, doi:10.5194/gmd-5-167-2012.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and non-equilibrium convection in large-scale models. J. Atmos. Sci., 71, 734–753, doi:10.1175/JAS-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Beirle, S., W. Koshak, R. Blakeslee, and T. Wagner, 2014: Global patterns of lightning properties derived by OTD and LIS. Nat. Hazards Earth Syst. Sci., 14, 2715–2726, doi:10.5194/nhess-14-2715-2014.

    • Search Google Scholar
    • Export Citation
  • Betz, H. D., K. Schmidt, P. Laroche, P. Blanchet, W. P. Oettinger, E. Defer, Z. Dziewit, and J. Konarski, 2009: LINET—An international lightning detection network in Europe. Atmos. Res., 91, 564–573, doi:10.1016/j.atmosres.2008.06.012.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., 2002: Lightning scaling relations revisited. J. Atmos. Sci., 59, 1086–1104, doi:10.1175/1520-0469(2002)059<1086:LSRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108–122, doi:10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., S. A. Weiss, and K. M. Calhoun, 2014: Continuous variability in thunderstorm primary electrification and an evaluation of inverted-polarity terminology. Atmos. Res., 135–136, 274–284, doi:10.1016/j.atmosres.2012.10.009.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014a: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404–414, doi:10.1016/j.atmosres.2012.06.028.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014b: LIS/OTD gridded lightning climatology data collection (version 2.3.2014). NASA Global Hydrology Resource Center, Distributed Active Archive Center, doi:10.5067/LIS/LIS-OTD/DATA311.

  • Christian, H. J., R. J. Blakeslee, and S. J. Goodman, 1989: The detection of lightning from geostationary orbit. J. Geophys. Res., 94, 13 329–13 337, doi:10.1029/JD094iD11p13329.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 1999: The Lightning Imaging Sensor. Proc. 11th Conf. on Atmospheric Electricity, Guntersville, AL, ICAE, 746–749.

  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Chronis, T. G., and E. N. Anagnostou, 2003: Error analysis for a long-range lightning monitoring network of ground-based receivers in Europe. J. Geophys. Res., 108, 4779, doi:10.1029/2003JD003776.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1388, doi:10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., H. Höller, and U. Schulmann, 2011: Modeling the flash rate of thunderstorms. Part I: Framework. Mon. Wea. Rev., 139, 3093–3111, doi:10.1175/MWR-D-10-05031.1.

    • Search Google Scholar
    • Export Citation
  • Defer, E., P. Blanchet, C. Théry, P. Laroche, J. E. Dye, M. Venticinque, and K. L. Cummins, 2001: Lightning activity for the July 10, 1996, storm during the Stratosphere Troposphere Experiment: Radiation, Aerosol, and Ozone-A (STERAO-A) experiment. J. Geophys. Res., 106, 10 151–10 172, doi:10.1029/2000JD900849.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi:10.1029/2007JD009598.

    • Search Google Scholar
    • Export Citation
  • Dobber, M., and J. Grandell, 2014: Meteosat Third Generation (MTG) Lightning Imager (LI) instrument performance and calibration from user perspective. Proc. 23rd Conf. on Characterization and Radiometric Calibration for Remote Sensing (CALCON), Logan, UT, Utah State University, 13 pp.

  • Emersic, C., and C. P. R. Saunders, 2010: Further laboratory investigations into the relative diffusional growth rate theory of thunderstorm electrification. Atmos. Res., 98, 327–340, doi:10.1016/j.atmosres.2010.07.011.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., M. S. Gilmore, E. R. Mansell, L. J. Wicker, and J. M. Straka, 2006: Electrification and lightning in an idealized boundary-crossing supercell simulation of 2 June 1995. Mon. Wea. Rev., 134, 3149–3172, doi:10.1175/MWR3231.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, D. R. MacGorman, and C. L. Ziegler, 2013: The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW Model: Benchmark simulations of a continental squall line, a tropical cyclone, and a winter storm. Mon. Wea. Rev., 141, 2390–2415, doi:10.1175/MWR-D-12-00278.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, 2015: Explicitly simulated electrification and lightning within a tropical cyclone based on the environment of Hurricane Isaac (2012). J. Atmos. Sci., 72, 4167–4193, doi:10.1175/JAS-D-14-0374.1.

    • Search Google Scholar
    • Export Citation
  • Finney, D. L., R. M. Doherty, O. Wild, H. Huntrieser, H. C. Pumphrey, and A. M. Blyth, 2014: Using cloud ice flux to parametrise large-scale lightning. Atmos. Chem. Phys., 14, 12 665–12 682, doi:10.5194/acp-14-12665-2014.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2005: The North Alabama Lightning Mapping Array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423–437, doi:10.1016/j.atmosres.2004.11.035.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 34–49, doi:10.1016/j.atmosres.2013.01.006.

    • Search Google Scholar
    • Export Citation
  • Grewe, V., D. Brunner, M. Dameris, J. L. Grenfell, R. Hein, D. Shindell, and J. Staehelin, 2001: Origin and variability of upper tropospheric nitrogen oxides and ozone at northern mid-latitudes. Atmos. Environ., 35, 3421–3433, doi:10.1016/S1352-2310(01)00134-0.

    • Search Google Scholar
    • Export Citation
  • Janisková, M., and P. Lopez, 2013: Linearized physics for data assimilation at ECMWF. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, S. K. Park and L. Xu, Eds., Springer-Verlag, 251–286, doi:10.1007/978-3-642-35088-7_11.

  • Kotroni, V., and K. Lagouvardos, 2016: Lightning in the Mediterranean and its relation with sea-surface temperature. Environ. Res. Lett., 11, 034006, doi:10.1088/1748-9326/11/3/034006.

    • Search Google Scholar
    • Export Citation
  • Kurz, C., and V. Grewe, 2002: Lightning and thunderstorms. Part I: Observational data and model results. Meteor. Z., 11, 379–393, doi:10.1127/0941-2948/2002/0011-0379.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and S. Heckman, 2012: Total lightning data and real-time severe storm prediction. Proc. Conf. on Meteorological Environmental Instruments and Methods of Observation Management Group (10th session), Brussels, Belgium, World Meteorological Organization, 12 pp.

  • Lund, N. R., D. R. MacGorman, T. J. Schuur, M. I. Biggerstaff, and W. D. Rust, 2009: Relationships between lightning location and polarimetric radar signatures in a small mesocale convective system. Mon. Wea. Rev., 137, 4151–4170, doi:10.1175/2009MWR2860.1.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 432 pp.

  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 997–1013, doi:10.1175/2007BAMS2352.1.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., I. R. Apostolakopoulos, N. R. Lund, N. W. S. Demetriades, M. J. Murphy, and P. R. Krehbiel, 2011: The timing of cloud-to-ground lightning relative to total lightning activity. Mon. Wea. Rev., 139, 3871–3886, doi:10.1175/MWR-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
  • Maggio, C. R., T. C. Marshall, and M. Stolzenburg, 2009: Estimations of charge transferred and energy released by lightning flashes. J. Geophys. Res., 114, D14203, doi:10.1029/2008JD011506.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70, 2032–2050, doi:10.1175/JAS-D-12-0264.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107, doi:10.1029/2000JD000244.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110, D12101, doi:10.1029/2004JD005287.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., M. P. McCarthy, and W. D. Rust, 1995: Electric field magnitudes and lightning initiation in thunderstorms. J. Geophys. Res., 100, 7097–7103, doi:10.1029/95JD00020.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., S. J. Goodman, K. M. LaCasse, and D. J. Cecil, 2009: Forecasting lightning threat using cloud-resolving model simulations. Wea. Forecasting, 24, 709–729, doi:10.1175/2008WAF2222152.1.

    • Search Google Scholar
    • Export Citation
  • Meijer, E. W., P. F. J. van Velthoven, D. W. Brunner, H. Huntrieser, and H. Kelder, 2001: Improvement and evaluation of the parameterisation of nitrogen oxide production by lightning. Phys. Chem. Earth, 26, 577–583, doi:10.1016/S1464-1917(01)00050-2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 1179–1193, doi:10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, C., and D. Rind, 1994: Modeling global lightning distributions in a general circulation model. Mon. Wea. Rev., 122, 1930–1939, doi:10.1175/1520-0493(1994)122<1930:MGLDIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf, and A. Simmmons, 2000: The ECMWF operational implementation of the four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143–1170, doi:10.1002/qj.49712656415.

    • Search Google Scholar
    • Export Citation
  • Rodger, C. J., S. Werner, J. B. Brundell, E. H. Lay, N. R. Thomson, R. H. Holzworth, and R. L. Dowden, 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys., 24, 3197–3214, doi:10.5194/angeo-24-3197-2006.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., J. T. Seeley, D. Vollaro, and J. Molinari, 2014: Projected increase in lightning strikes in the United States due to global warming. Science, 346, 851–854, doi:10.1126/science.1259100.

    • Search Google Scholar
    • Export Citation
  • Rust, W. D., and T. C. Marshall, 1996: On abandoning the thunderstorm tripole-charge paradigm. J. Geophys. Res., 101, 23 499–23 504, doi:10.1029/96JD01802.

    • Search Google Scholar
    • Export Citation
  • Said, R. K., U. S. Inan, and K. L. Cummins, 2010: Long-range lightning geolocation using a VLF radio atmospheric waveform bank. J. Geophys. Res., 115, D23108, doi:10.1029/2010JD013863.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., W. D. Keith, and R. P. Mitzeva, 1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96, 11 007–11 017, doi:10.1029/91JD00970.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., H. Bax-Norman, C. Emersic, E. E. Avila, and N. E. Castellano, 2006: Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 132, 2653–2673, doi:10.1256/qj.05.218.

    • Search Google Scholar
    • Export Citation
  • Schulz, W., G. Diendorfer, S. Pedeboy, and D. R. Poelman, 2016: The European lightning location system EUCLID—Part 1: Performance analysis and validation. Nat. Hazards Earth Syst. Sci., 16, 595–605, doi:10.5194/nhess-16-595-2016.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., and H. Huntrieser, 2007: The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys., 7, 3823–3907, doi:10.5194/acp-7-3823-2007.

    • Search Google Scholar
    • Export Citation
  • Stolz, D. C., S. A. Rutledge, and J. R. Pierce, 2015: Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. J. Geophys. Res. Atmos., 120, 6207–6231, doi:10.1002/2014JD023033.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., W. D. Rust, and T. C. Marshall, 1998: Electrical structure in thunderstorm convective regions: 3. Synthesis. J. Geophys. Res., 103, 14 097–14 108, doi:10.1029/97JD03545.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548, doi:10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 2006: Precipitation mechanisms in east Asian monsoon: Videosonde study. J. Geophys. Res., 111, D09202, doi:10.1029/2005JC003074.

    • Search Google Scholar
    • Export Citation
  • Thomas, R., P. R. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin, 2004: Accuracy of the Lightning Mapping Array. J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Tost, H., P. Jöckel, and J. Lelieveld, 2007: Lightning and convection parameterisations—Uncertainties in global modelling. Atmos. Chem. Phys., 7, 4553–4568, doi:10.5194/acp-7-4553-2007.

    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., 1963: Some facts and speculation concerning the origin and role of thunderstorm electricity. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 224–241.

  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94, 13 151–13 167, doi:10.1029/JD094iD11p13151.

  • Williams, E. R., and S. Stanfill, 2002: The physical origin of the land–ocean contrast in lightning activity. C. R. Phys., 3, 1277–1292, doi:10.1016/S1631-0705(02)01407-X.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and G. Sátori, 2004: Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. J. Atmos. Sol.-Terr. Phys., 66, 1213–1231, doi:10.1016/j.jastp.2004.05.015.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Yuan, T., L. A. Remer, K. E. Pickering, and H. Yu, 2011: Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys. Res. Lett., 38, L04701, doi:10.1029/2010GL046052.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and D. R. MacGorman, 1994: Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm. J. Atmos. Sci., 51, 833–851, doi:10.1175/1520-0469(1994)051<0833:OLMRTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., D. R. MacGorman, J. E. Dye, and P. S. Ray, 1991: A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96, 12 833–12 855, doi:10.1029/91JD01246.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1794 564 79
PDF Downloads 1388 516 49