Perturbing Surface Initial Conditions in a Regional Ensemble Prediction System

Martin Bellus NWP Division, Slovak Hydro-meteorological Institute, Bratislava, Slovakia

Search for other papers by Martin Bellus in
Current site
Google Scholar
PubMed
Close
,
Yong Wang Department of Forecasting Models, Central Institute for Meteorology and Geodynamics, Vienna, Austria

Search for other papers by Yong Wang in
Current site
Google Scholar
PubMed
Close
, and
Florian Meier Department of Forecasting Models, Central Institute for Meteorology and Geodynamics, Vienna, Austria

Search for other papers by Florian Meier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two techniques for perturbing surface initial conditions in the regional ensemble system Aire Limitée Adaptation Dynamique Développement International-Limited Area Ensemble Forecasting (ALADIN-LAEF) are presented and investigated in this paper. The first technique is the noncycling surface breeding (NCSB), which combines short-range surface forecasts driven by perturbed atmospheric forcing and the breeding method for generating the perturbations on surface initial conditions. The second technique, which is currently used in the ALADIN-LAEF operational version, applies an ensemble of surface data assimilations (ESDA) in which the observations are randomly perturbed. Both techniques are evaluated over a two-month period from late spring to summer. The results show that the evaluation is more favorable to ESDA. In general, the ensemble forecasts of the observed near-surface meteorological variables (screen-level variables) of ESDA are more skillful than NCSB, in particular for 2-m temperature they are statistically more consistent and reliable. A slightly better statistical reliability for 2-m relative humidity and 10-m wind has been found as well. This could be attributed to the introduction of surface data assimilation in ESDA, which provides more accurate surface initial conditions. Moreover, the observation perturbation in ESDA helps to better estimate the initial condition uncertainties. For the forecast of precipitation and the upper-air variables in the lower troposphere, both ESDA and NCSB perform very similarly, having neutral impact.

Corresponding author address: Yong Wang, Department of Forecasting Models, Zentralanstalt für Meteorologie und Geodynamik, Hohe Warte 38, A-1190 Vienna, Austria. E-mail: yong.wang@zamg.ac.at

Abstract

Two techniques for perturbing surface initial conditions in the regional ensemble system Aire Limitée Adaptation Dynamique Développement International-Limited Area Ensemble Forecasting (ALADIN-LAEF) are presented and investigated in this paper. The first technique is the noncycling surface breeding (NCSB), which combines short-range surface forecasts driven by perturbed atmospheric forcing and the breeding method for generating the perturbations on surface initial conditions. The second technique, which is currently used in the ALADIN-LAEF operational version, applies an ensemble of surface data assimilations (ESDA) in which the observations are randomly perturbed. Both techniques are evaluated over a two-month period from late spring to summer. The results show that the evaluation is more favorable to ESDA. In general, the ensemble forecasts of the observed near-surface meteorological variables (screen-level variables) of ESDA are more skillful than NCSB, in particular for 2-m temperature they are statistically more consistent and reliable. A slightly better statistical reliability for 2-m relative humidity and 10-m wind has been found as well. This could be attributed to the introduction of surface data assimilation in ESDA, which provides more accurate surface initial conditions. Moreover, the observation perturbation in ESDA helps to better estimate the initial condition uncertainties. For the forecast of precipitation and the upper-air variables in the lower troposphere, both ESDA and NCSB perform very similarly, having neutral impact.

Corresponding author address: Yong Wang, Department of Forecasting Models, Zentralanstalt für Meteorologie und Geodynamik, Hohe Warte 38, A-1190 Vienna, Austria. E-mail: yong.wang@zamg.ac.at
Save
  • Balsamo, G., F. Bouyssel, and J. Noilhan, 2004: A simplified bi-dimensional variational analysis of soil moisture from screen-level observations in a mesoscale numerical weather-prediction model. Quart. J. Roy. Meteor. Soc., 130, 895915, doi:10.1256/qj.02.215.

    • Search Google Scholar
    • Export Citation
  • Barthlott, C., and N. Kalthoff, 2011: A numerical sensitivity study on the impact of soil moisture on convection-related parameters and convective precipitation over complex terrain. J. Atmos. Sci., 68, 29712987, doi:10.1175/JAS-D-11-027.1.

    • Search Google Scholar
    • Export Citation
  • Belair, S., 2015: Regional environmental prediction systems. Seamless Prediction of the Earth System: From Minutes to Months, WMO-1156, G. Brunet, S. Jones, and P. Ruti, Eds., World Meteorological Organization, 331–346.

  • Berre, L., O. Pannekoucke, G. Desroziers, S. E. Stefanescu, B. Chapnik, and L. Raynaud, 2007: A variational assimilation ensemble and the spatial filtering of its error covariances: Increase of sample size by local spatial averaging. Proc. ECMWF Workshop on Flow-Dependent Aspects of Data Assimilation, Reading, United Kingdom, ECMWF, 151168.

  • Bouttier, F., J.-F. Mahfouf, and J. Noilhan, 1993a: Sequential assimilation of soil moisture from atmospheric low-level parameters. Part I: Sensitivity and calibration studies. J. Appl. Meteor., 32, 13351351, doi:10.1175/1520-0450(1993)032<1335:SAOSMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., J.-F. Mahfouf, and J. Noilhan, 1993b: Sequential assimilation of soil moisture from atmospheric low-level parameters. Part II: Implementation in a mesoscale model. J. Appl. Meteor., 32, 13521364, doi:10.1175/1520-0450(1993)032<1352:SAOSMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., and K. R. Mylne, 2009: Ensemble transform Kalman filter perturbation for a regional ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 757766, doi:10.1002/qj.404.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, doi:10.1002/qj.234.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. N. Palmer, 1995: The singular vector structure of the atmospheric general circulation. J. Atmos. Sci., 52, 14341456, doi:10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, 2005: A comparison of the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems. Mon. Wea. Rev., 133, 10761097, doi:10.1175/MWR2905.1.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Leutbecher, and L. Isaksen, 2008: Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 134, 20512066, doi:10.1002/qj.346.

    • Search Google Scholar
    • Export Citation
  • Burns, P. J., and D. V. Pryor, 1998: Surface radiative transport at large scale via Monte Carlo. Ann. Rev. Heat Transfer, 9, 79158, doi:10.1615/AnnualRevHeatTransfer.v9.40.

    • Search Google Scholar
    • Export Citation
  • Charron, M., G. Pellerin, L. Spacek, P. L. Houtekamer, N. Gagnon, H. L. Mitchell, and L. Michelin, 2010: Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Wea. Rev., 138, 18771901, doi:10.1175/2009MWR3187.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, doi:10.1175/2009WAF2222222.1.

    • Search Google Scholar
    • Export Citation
  • Deng, Z., Y. Tang, D. Chen, and G. Wang, 2012: A hybrid ensemble generation method for EnKF for Argo data assimilation. Atmos.–Ocean, 50, 129145, doi:10.1080/07055900.2012.719823.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., C. Dreveton, A. Braun, and D. Cariolle, 1994: The ARPEGE/IFS atmosphere model: A contribution to the French community climate modelling. Climate Dyn., 10, 249266, doi:10.1007/BF00208992.

    • Search Google Scholar
    • Export Citation
  • Du, H., F. J. Doblas-Reyes, J. García-Serrano, V. Guemas, Y. Soufflet, and B. Wouters, 2012: Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations. Climate Dyn., 39, 20132023, doi:10.1007/s00382-011-1285-9.

    • Search Google Scholar
    • Export Citation
  • Du, J., and M. S. Tracton, 2001: Implementation of a real-time short-range ensemble forecasting system at NCEP: An update. Preprints, Ninth Conf. on Mesoscale Processes, Ft. Lauderdale, FL, Amer. Meteor. Soc., 355356.

  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev. Geophys., 23, 357390, doi:10.1029/RG023i004p00357.

    • Search Google Scholar
    • Export Citation
  • Giard, D., and E. Bazile, 2000: Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon. Wea. Rev., 128, 9971015, doi:10.1175/1520-0493(2000)128<0997:IOANAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, doi:10.1175/JHM511.1.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and Coauthors, 2011: The U.S. Air Force Weather Agency’s mesoscale ensemble: Scientific description and performance results. Tellus, 63A, 625641, doi:10.1111/j.1600-0870.2010.00497.x.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and S. J. Colucci, 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125, 13121327, doi:10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and R. Swinbank, 2015: Stochastic forcing, ensemble prediction systems, and TIGGE. Seamless Prediction of the Earth System: From Minutes to Months, WMO-1156, G. Brunet, S. Jones, and P. Ruti, Eds., World Meteorological Organization, 187–212.

  • Horányi, A., M. Mile, and M. Szücs, 2011: Latest developments around the ALADIN operational short-range ensemble prediction system in Hungary. Tellus, 63A, 642651, doi:10.1111/j.1600-0870.2011.00518.x.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 131, 32693289, doi:10.1256/qj.05.135.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., M. Charron, H. Mitchell, and G. Pellerin, 2007: Status of the global EPS at Environment Canada. Proc. ECMWF Workshop on Ensemble Prediction, Reading, United Kingdom, ECMWF, 5768.

  • Isaksen, L., M. Fisher, and J. Berner, 2007: Use of analysis ensembles in estimating flow-dependent background error variance. Proc. ECMWF Workshop on Flow-Dependent Aspects of Data Assimilation, Reading, United Kingdom, ECMWF, 65–86.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610, doi:10.1175/JHM510.1.

    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., M. Carrera, S. Bélair, N. Gagnon, R. Frenette, M. Charron, and M. Yau, 2013: Impact of surface parameter uncertainties within the Canadian Regional Ensemble Prediction System. Mon. Wea. Rev., 141, 15061526, doi:10.1175/MWR-D-11-00354.1.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539, doi:10.1016/j.jcp.2007.02.014.

  • Li, X., M. Charron, L. Spacek, and G. Candille, 2008: A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbation. Mon. Wea. Rev., 136, 443462, doi:10.1175/2007MWR2109.1.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., 1991: Analysis of soil moisture from near surface parameters: A feasibility study. J. Appl. Meteor., 30, 15341547, doi:10.1175/1520-0450(1991)030<1534:AOSMFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., K. Bergaoui, C. Draper, F. Bouyssel, F. Taillefer, and L. Taseva, 2009: A comparison of two off-line soil analysis schemes for assimilation of screen level observations. J. Geophys. Res., 114, D08105, doi:10.1029/2008JD011077.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. P., 1994: Lagged Fibonacci series random number generator for the NEC SX-3. Int. J. High Speed Comput., 06, 387, doi:10.1142/S0129053394000202.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L. Anderson, and M. L. Weisman, 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 45194541, doi:10.1175/MWR-D-14-00100.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, S., Y. Wang, W. Wagner, and J.-F. Mahfouf, 2014: Impact of ASCAT soil moisture assimilation on regional precipitation forecasts: A case study for Austria. Mon. Wea. Rev., 142, 15251540, doi:10.1175/MWR-D-12-00311.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Smith, and M. L. Weisman, 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. Wea. Forecasting, 29, 12951318, doi:10.1175/WAF-D-13-00145.1.

    • Search Google Scholar
    • Export Citation
  • Storto, A., and R. Randriamampianina, 2008: Use of satellite data in ALADIN-HARMONIE/Norway. Proc. 16th Int. TOVS Study Conf. (ITSC-16), Angra dos Reis, Brazil, PETROBRAS, 11 pp. [Available online at https://cimss.ssec.wisc.edu/itwg/itsc/itsc16/proceedings/6_13_Randriamampianina_paper.pdf.]

  • Sutton, C., T. M. Hamill, and T. T. Warner, 2006: Will perturbing soil moisture improve warm-season ensemble forecasts? A proof of concept. Mon. Wea. Rev., 134, 31743189, doi:10.1175/MWR3248.1.

    • Search Google Scholar
    • Export Citation
  • Tennant, W., and S. Beare, 2014: New schemes to perturb sea-surface temperature and soil moisture content in MOGREPS. Quart. J. Roy. Meteor. Soc., 140, 11501160, doi:10.1002/qj.2202.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, doi:10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., T. Haiden, and A. Kann, 2006: The operational Limited Area Modelling system at ZAMG: Aladin-Austria. Österreich. Beitr. Meteor. Geophys., 37, 33 pp.

  • Wang, Y., A. Kann, M. Bellus, J. Pailleux, and C. Wittmann, 2010: A strategy for perturbing surface initial conditions in LAMEPS. Atmos. Sci. Lett., 11, 108113, doi:10.1002/asl.260.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2011: The Central European limited-area ensemble forecasting system: ALADIN-LAEF. Quart. J. Roy. Meteor. Soc., 137, 483502, doi:10.1002/qj.751.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., M. Bellus, J.-F. Geleyn, X. Ma, W. Tian, and F. Weidle, 2014: A new method for generating initial condition perturbations in a regional ensemble prediction system: Blending. Mon. Wea. Rev., 142, 20432059, doi:10.1175/MWR-D-12-00354.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 684 140 13
PDF Downloads 269 63 7