Assimilation of Pseudo-GLM Data Using the Ensemble Kalman Filter

Blake J. Allen Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Blake J. Allen in
Current site
Google Scholar
PubMed
Close
,
Edward R. Mansell NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Edward R. Mansell in
Current site
Google Scholar
PubMed
Close
,
David C. Dowell NOAA/OAR/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by David C. Dowell in
Current site
Google Scholar
PubMed
Close
, and
Wiebke Deierling National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Wiebke Deierling in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Total lightning observations that will be available from the GOES-R Geostationary Lightning Mapper (GLM) have the potential to be useful in the initialization of convection-resolving numerical weather models, particularly in areas where other types of convective-scale observations are sparse or nonexistent. This study used the ensemble Kalman filter (EnKF) to assimilate real-data pseudo-GLM flash extent density (FED) observations at convection-resolving scale for a nonsevere multicell storm case (6 June 2000) and a tornadic supercell case (8 May 2003).

For each case, pseudo-GLM FED observations were generated from ground-based lightning mapping array data with a spacing approximately equal to the nadir pixel width of the GLM, and tests were done to examine different FED observation operators and the utility of temporally averaging observations to smooth rapid variations in flash rates.

The best results were obtained when assimilating 1-min temporal resolution data using any of three observation operators that utilized graupel mass or graupel volume. Each of these three observation operators performed well for both the weak, disorganized convection of the multicell case and the much more intense convection of the supercell case.

An observation operator using the noninductive charging rate performed poorly compared to the graupel mass and graupel volume operators, a result that appears likely to be due to the inability of the noninductive charging rate to account for advection of space charge after charge separation occurs.

Corresponding author address: Blake J. Allen, Cooperative Institute for Mesoscale Meteorological Studies, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: blake.allen@ou.edu

Abstract

Total lightning observations that will be available from the GOES-R Geostationary Lightning Mapper (GLM) have the potential to be useful in the initialization of convection-resolving numerical weather models, particularly in areas where other types of convective-scale observations are sparse or nonexistent. This study used the ensemble Kalman filter (EnKF) to assimilate real-data pseudo-GLM flash extent density (FED) observations at convection-resolving scale for a nonsevere multicell storm case (6 June 2000) and a tornadic supercell case (8 May 2003).

For each case, pseudo-GLM FED observations were generated from ground-based lightning mapping array data with a spacing approximately equal to the nadir pixel width of the GLM, and tests were done to examine different FED observation operators and the utility of temporally averaging observations to smooth rapid variations in flash rates.

The best results were obtained when assimilating 1-min temporal resolution data using any of three observation operators that utilized graupel mass or graupel volume. Each of these three observation operators performed well for both the weak, disorganized convection of the multicell case and the much more intense convection of the supercell case.

An observation operator using the noninductive charging rate performed poorly compared to the graupel mass and graupel volume operators, a result that appears likely to be due to the inability of the noninductive charging rate to account for advection of space charge after charge separation occurs.

Corresponding author address: Blake J. Allen, Cooperative Institute for Mesoscale Meteorological Studies, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: blake.allen@ou.edu
Save
  • Alexander, G. D., J. A. Weinman, V. M. Karyampudi, W. S. Olson, and A. C. Lee, 1999: The effect of assimilating rain rates derived from satellites and lightning on the forecasts of the 1993 superstorm. Mon. Wea. Rev., 127, 1433–1457, doi:10.1175/1520-0493(1999)127<1433:TEOARR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, I. M., C. P. R. Saunders, R. P. Mitzeva, and S. L. Peck, 1997: The effect on thunderstorm charging of the rate of rime accretion by graupel. Atmos. Res., 43, 277–295, doi:10.1016/S0169-8095(96)00043-9.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., W. D. Rust, T. J. Schuur, D. R. MacGorman, P. R. Krehbiel, and W. Rison, 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135, 2525–2544, doi:10.1175/MWR3421.1.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., 2004: High resolution analyses of the 8 May 2003 Oklahoma City storm. Part I: Storm structure and evolution from radar data. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 12.4. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_81939.htm.]

  • Calhoun, K. M., E. R. Mansell, D. R. MacGorman, and D. C. Dowell, 2014: Numerical simulations of lightning and storm charge of the 29–30 May 2004 Geary, Oklahoma, supercell thunderstorm using EnKF mobile radar data assimilation. Mon. Wea. Rev., 142, 3977–3997, doi:10.1175/MWR-D-13-00403.1.

    • Search Google Scholar
    • Export Citation
  • Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 3081–3094, doi:10.1175/MWR3021.1.

    • Search Google Scholar
    • Export Citation
  • Chang, D.-E., J. A. Weinman, C. A. Morales, and W. S. Olson, 2001: The effect of spaceborne microwave and ground-based continous lightning measurements on forecasts of the 1998 Groundhog Day storm. Mon. Wea. Rev., 129, 1809–1833, doi:10.1175/1520-0493(2001)129<1809:TEOSMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., 2008: Flash rate, electrical, microphysical, and kinematic relationships across a simulated storm spectrum. M.S. thesis, School of Meteorology, University of Oklahoma, Norman, OK, 71 pp.

  • Coniglio, M. C., D. J. Stensrud, and L. J. Wicker, 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 1231–1252, doi:10.1175/JAS3681.1.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi:10.1029/2007JD009598.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., W. A. Petersen, J. Latham, S. Ellis, and H. J. Christian, 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15210, doi:10.1029/2007JD009700.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911–927, doi:10.1175/2008JTECHA1156.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and D. J. Stensrud, 2004a: High resolution analyses of the 8 May 2003 Oklahoma City storm. Part II: EnKF data assimilation and forecast experiments. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 12.5. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_81393.htm.]

  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004b: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 1982–2005, doi:10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272–294, doi:10.1175/2010MWR3438.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., and J. M. Reisner, 2011: High-resolution simulation of the electrification and lightning of Hurricane Rita during the period of rapid intensification. J. Atmos. Sci., 68, 477–494, doi:10.1175/2010JAS3659.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, 2012: Application of a lightning data assimilation technique in the WRF-ARW model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Wea. Rev., 140, 2609–2627, doi:10.1175/MWR-D-11-00299.1.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, 2015: Explicitly simulated electrification and lightning within a tropical cyclone based on the environment of Hurricane Isaac (2012). J. Atmos. Sci., 72, 4167–4193, doi:10.1175/JAS-D-14-0374.1.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., D. E. Buechler, P. D. Wright, and W. D. Rust, 1988: Lightning and precipitation history of a microburst-producing storm. Geophys. Res. Lett., 15, 1185–1188, doi:10.1029/GL015i011p01185.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 34–49, doi:10.1016/j.atmosres.2013.01.006.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., P. Regulski, C. Mass, and R. Torn, 2008: Lightning data assimilation using an ensemble Kalman filter. 20th Int. Lightning Detection Conf., Tucson, AZ, Vaisala, 6 pp. [Available online at http://www.vaisala.com/en/events/ildcilmc/Documents/Lightning%20Data%20Assimilation%20using%20an%20Ensemble%20Kalman%20Filter.PDF.]

  • Jayaratne, E. R., C. P. R. Saunders, and J. Hallett, 1983: Laboratory studies of the charging of soft hail during ice crystal interactions. Quart. J. Roy. Meteor. Soc., 109, 609–630, doi:10.1002/qj.49710946111.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm. Mon. Wea. Rev., 134, 2734–2757, doi:10.1175/MWR3217.1.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Coauthors, 2004: The Severe Thunderstorm Electrification and Precipitation Study. Bull. Amer. Meteor. Soc., 85, 1107–1125, doi:10.1175/BAMS-85-8-1107.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221–250, doi:10.1175/1520-0469(1989)046<0221:LRRTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 997–1013, doi:10.1175/2007BAMS2352.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., 2014: Ensemble assimilation of simulated total lightning flash rates. Mon. Wea. Rev., 142, 3683–3695, doi:10.1175/MWR-D-14-00061.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107, doi:10.1029/2000JD000244.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., D. R. MacGorman, C. L. Ziegler, and J. M. Straka, 2005: Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res., 110, D12101, doi:10.1029/2004JD005287.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and D. R. MacGorman, 2007: A lightning data assimilation technique for mesoscale forecast models. Mon. Wea. Rev., 135, 1732–1748, doi:10.1175/MWR3387.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171–194, doi:10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Marchand, M. R., and H. E. Fuelberg, 2014: Assimilation of lightning data using a nudging method involving low-level warming. Mon. Wea. Rev., 142, 4850–4870, doi:10.1175/MWR-D-14-00076.1.

    • Search Google Scholar
    • Export Citation
  • Papadopoulos, A., T. G. Chronis, and E. N. Anagnostou, 2005: Improving convective precipitation forecasting through assimilation of regional lightning measurements in a mesoscale model. Mon. Wea. Rev., 133, 1961–1977, doi:10.1175/MWR2957.1.

    • Search Google Scholar
    • Export Citation
  • Pessi, A. T., and S. Businger, 2009: The impact of lightning data assimilation on a winter storm simulation over the North Pacific Ocean. Mon. Wea. Rev., 137, 3177–3195, doi:10.1175/2009MWR2765.1.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., H. J. Christian, and S. A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett., 32, L14819, doi:10.1029/2005GL023236.

    • Search Google Scholar
    • Export Citation
  • Reynolds, S. E., M. Brook, and M. F. Gourley, 1957: Thunderstorm charge separation. J. Meteor., 14, 426–436, doi:10.1175/1520-0469(1957)014<0426:TCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., D. W. Burgess, and R. B. Wilhelmson, 2008: A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Mon. Wea. Rev., 136, 2849–2870, doi:10.1175/2008MWR2330.1.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103, 13 949–13 956, doi:10.1029/97JD02644.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and K. L. Elmore, 2004: The use of radial velocity derivatives to diagnose rotation and divergence. 11th Conf. on Aviation, Range, and Aerospace, Hyannis, MA, Amer. Meteor. Soc., P5.6. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_81827.htm.]

  • Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548, doi:10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., L. J. Wicker, D. C. Dowell, H. B. Bluestein, D. T. Dawson II, and M. Xue, 2013: EnKF assimilation of high-resolution, mobile Doppler radar data of the 4 May 2007 Greensburg, Kansas, supercell into a numerical cloud model. Mon. Wea. Rev., 141, 625–648, doi:10.1175/MWR-D-12-00099.1.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., K. C. Wiens, and S. A. Rutledge, 2007: Radar and lightning observations of normal and inverted polarity multicellular storms from STEPS. Mon. Wea. Rev., 135, 3682–3706, doi:10.1175/2007MWR1954.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913–1924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 2675–2703, doi:10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 4151–4177, doi:10.1175/JAS3615.1.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single and double moment microphysics schemes. Mon. Wea. Rev., 141, 3388–3412, doi:10.1175/MWR-D-12-00237.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 1487–1509, doi:10.1175/1520-0469(1985)042<1487:ROTAMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 620 225 43
PDF Downloads 327 107 8