The Sensitivity of WRF Daily Summertime Simulations over West Africa to Alternative Parameterizations. Part II: Precipitation

Erik Noble NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Erik Noble in
Current site
Google Scholar
PubMed
Close
,
Leonard M. Druyan NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Leonard M. Druyan in
Current site
Google Scholar
PubMed
Close
, and
Matthew Fulakeza NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Matthew Fulakeza in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper evaluates the performance of the Weather Research and Forecasting (WRF) Model as a regional atmospheric model over West Africa. It tests WRF’s sensitivity to 64 configurations of alternative parameterizations in a series of 104 twelve-day September simulations during 11 consecutive years, 2000–10. The 64 configurations combine WRF parameterizations of cumulus convection, radiation, surface hydrology, and the PBL. Simulated daily and total precipitation results are validated against Global Precipitation Climatology Project (GPCP) and Tropical Rainfall Measuring Mission (TRMM) data. Particular attention is given to westward-propagating precipitation maxima associated with African easterly waves (AEWs). A wide range of daily precipitation validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve time–longitude correlations (against GPCP) of between 0.35 and 0.42 and spatiotemporal variability amplitudes only slightly higher than observed estimates. A parallel simulation by the benchmark Regional Model version 3 achieves a higher correlation (0.52) and realistic spatiotemporal variability amplitudes. The largest favorable impact on WRF precipitation validation is achieved by selecting the Grell–Devenyi convection scheme, resulting in higher correlations against observations than using the Kain–Fritch convection scheme. Other parameterizations have less obvious impacts. Validation statistics for optimized WRF configurations simulating the parallel period during 2000–10 are more favorable for 2005, 2006, and 2008 than for other years. The selection of some of the same WRF configurations as high scorers in both circulation and precipitation validations supports the notion that simulations of West African daily precipitation benefit from skillful simulations of associated AEW vorticity centers and that simulations of AEWs would benefit from skillful simulations of convective precipitation.

Denotes Open Access content.

Corresponding author address: Erik Noble, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. E-mail: erik.noble@nasa.gov

Abstract

This paper evaluates the performance of the Weather Research and Forecasting (WRF) Model as a regional atmospheric model over West Africa. It tests WRF’s sensitivity to 64 configurations of alternative parameterizations in a series of 104 twelve-day September simulations during 11 consecutive years, 2000–10. The 64 configurations combine WRF parameterizations of cumulus convection, radiation, surface hydrology, and the PBL. Simulated daily and total precipitation results are validated against Global Precipitation Climatology Project (GPCP) and Tropical Rainfall Measuring Mission (TRMM) data. Particular attention is given to westward-propagating precipitation maxima associated with African easterly waves (AEWs). A wide range of daily precipitation validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve time–longitude correlations (against GPCP) of between 0.35 and 0.42 and spatiotemporal variability amplitudes only slightly higher than observed estimates. A parallel simulation by the benchmark Regional Model version 3 achieves a higher correlation (0.52) and realistic spatiotemporal variability amplitudes. The largest favorable impact on WRF precipitation validation is achieved by selecting the Grell–Devenyi convection scheme, resulting in higher correlations against observations than using the Kain–Fritch convection scheme. Other parameterizations have less obvious impacts. Validation statistics for optimized WRF configurations simulating the parallel period during 2000–10 are more favorable for 2005, 2006, and 2008 than for other years. The selection of some of the same WRF configurations as high scorers in both circulation and precipitation validations supports the notion that simulations of West African daily precipitation benefit from skillful simulations of associated AEW vorticity centers and that simulations of AEWs would benefit from skillful simulations of convective precipitation.

Denotes Open Access content.

Corresponding author address: Erik Noble, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025. E-mail: erik.noble@nasa.gov
Save
  • Behrangi, A., K.-L. Hsu, B. Imam, S. Sorooshian, G. J. Huffman, and R. J. Kuligowski, 2009: PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis. J. Hydrometeor., 10, 14141429, doi:10.1175/2009JHM1139.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2002: RUC20—The 20-km version of the Rapid Update Cycle. NWS Tech. Procedures Bull. 490, 30 pp. [Available online at http://ruc.noaa.gov/ppt_pres/RUC20-tpb.pdf.]

  • Bernardet, L., and Coauthors, 2008: The Developmental Testbed Center and its winter forecasting experiment. Bull. Amer. Meteor. Soc., 89, 611627, doi:10.1175/BAMS-89-5-611.

    • Search Google Scholar
    • Export Citation
  • Berry, G. J., 2009: African easterly waves and convection. Ph.D thesis, State University of New York at Albany, 215 pp.

  • Berry, G. J., and C. D. Thorncroft, 2012: African easterly wave dynamics in a mesoscale numerical model: The upscale role of convection. J. Atmos. Sci., 69, 12671283, doi:10.1175/JAS-D-11-099.1.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, doi:10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., H.-N. S. Chin, D. C. Bader, and G. Bala, 2009: Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 95, 499521, doi:10.1007/s10584-009-9583-5.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chiao, S., and G. S. Jenkins, 2010: Numerical investigations on the formation of Tropical Storm Debby during NAMMA-06. Wea. Forecasting, 25, 866884, doi:10.1175/2010WAF2222313.1.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., T. Lang, S. A. Rutledge, and N. Guy, 2010: Characteristics of an African easterly wave observed during NAMMA. J. Atmos. Sci., 67, 325, doi:10.1175/2009JAS3141.1.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, and B. Briegleb, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Rep. NCAR/TN-4641 STR, 214 pp. [Available online at http://www.cesm.ucar.edu/models/atm-cam/docs/description/description.pdf.]

  • Cook, K. H., and E. K. Vizy, 2009: Tropical storm development from African easterly waves in the eastern Atlantic: A comparison of two successive waves using a regional model as part of NASA AMMA 2006. J. Atmos. Sci., 66, 33133334, doi:10.1175/2009JAS3064.1.

    • Search Google Scholar
    • Export Citation
  • Crétat, J., B. Pohl, Y. Richard, and P. Drobinski, 2012: Uncertainties in simulating regional climate of southern Africa: Sensitivity to physical parameterizations using WRF. Climate Dyn., 38, 613634, doi:10.1007/s00382-011-1055-8.

    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, P. de Felice, and H. Laurent, 1999: Easterly wave regimes and associated convection over West Africa and tropical Atlantic: Results from the NCEP/NCAR and ECMWF reanalyses. Climate Dyn., 15, 795822, doi:10.1007/s003820050316.

    • Search Google Scholar
    • Export Citation
  • Druyan, L. M., P. Lonergan, and M. Saloum, 1996: African wave disturbances and precipitation at Niamey during July–August 1987 and 1988. Climate Res., 7, 7183, doi:10.3354/cr007071.

    • Search Google Scholar
    • Export Citation
  • Druyan, L. M., M. Fulakeza, and P. Lonergan, 2006: Mesoscale analyses of West African summer climate: Focus on wave disturbances. Climate Dyn., 27, 459481, doi:10.1007/s00382-006-0141-9.

    • Search Google Scholar
    • Export Citation
  • Druyan, L. M., M. Fulakeza, and P. Lonergan, 2008: The impact of vertical resolution on regional model simulation of the West African summer monsoon. Int. J. Climatol., 28, 12931314, doi:10.1002/joc.1636.

    • Search Google Scholar
    • Export Citation
  • Druyan, L. M., M. Fulakeza, P. Lonergan, and E. Noble, 2009: Regional climate model simulation of the AMMA Special Observing Period #3 and the pre-Helene easterly wave. Meteor. Atmos. Phys., 105, 191210, doi:10.1007/s00703-009-0044-5.

    • Search Google Scholar
    • Export Citation
  • Druyan, L. M., M. Fulakeza, P. Lonergan, and R. Worrell, 2010a: Regional model nesting within GFS daily forecasts over West Africa. Open Atmos. Sci. J., 4, 111.

    • Search Google Scholar
    • Export Citation
  • Druyan, L. M., and Coauthors, 2010b: The WAMME regional model intercomparison study. Climate Dyn., 35, 175192, doi:10.1007/s00382-009-0676-7.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 2014: A history of mesoscale model development. Asia-Pac. J. Atmos. Sci., 50, 121131, doi:10.1007/s13143-014-0031-8.

  • Fink, A. H., and A. Reiner, 2003: Spatiotemporal variability of the relation between African easterly waves and West African squall lines in 1998 and 1999. J. Geophys. Res., 108, 4332, doi:10.1029/2002JD002816.

    • Search Google Scholar
    • Export Citation
  • Flaounas, E., S. Bastin, and S. Janicot, 2011: Regional climate modelling of the 2006 West African monsoon: Sensitivity to convection and planetary boundary layer parameterization using WRF. Climate Dyn., 36, 10831105, doi:10.1007/s00382-010-0785-3.

    • Search Google Scholar
    • Export Citation
  • Flaounas, E., S. Janicot, S. Bastin, and R. Roca, 2012: The West African monsoon onset in 2006: Sensitivity to surface albedo, orography, SST and synoptic scale dry-air intrusions using WRF. Climate Dyn., 38, 685708, doi:10.1007/s00382-011-1255-2.

    • Search Google Scholar
    • Export Citation
  • Fortune, M., 1980: Properties of African squall lines inferred from time-lapse satellite imagery. Mon. Wea. Rev., 108, 153168, doi:10.1175/1520-0493(1980)108<0153:POASLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., and D. P. Brown, 2008: Atlantic hurricane season of 2006. Mon. Wea. Rev., 136, 11741200, doi:10.1175/2007MWR2377.1.

  • Giorgi, F., and L. O. Mearns, 1991: Approaches to the simulation of regional climate change: A review. Rev. Geophys., 29, 191216, doi:10.1029/90RG02636.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Guy, N., S. A. Rutledge, and R. Cifelli, 2011: Radar characteristics of continental, coastal, and maritime convection observed during AMMA/NAMMA. Quart. J. Roy. Meteor. Soc., 137, 12411256, doi:10.1002/qj.839.

    • Search Google Scholar
    • Export Citation
  • Harrold, M., 2012: The Developmental Testbed Center’s final report on the inter-comparison of the WRFv3.3.1. AFWA operational and RRTMG-replacement configurations. DTC, Boulder, CO, 40 pp. [Available online at http://www.dtcenter.org/eval/meso_mod/afwa_test/wrf_v3.3.1/WRFv3.3.1_AFWA_RRTMG_final_report.pdf.]

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hovmöller, E., 1949: The trough-and-ridge diagram. Tellus, 1, 6266, doi:10.1111/j.2153-3490.1949.tb01260.x.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2016: The influence of African easterly waves on convection over tropical Africa and the East Atlantic. Mon. Wea. Rev., 144, 171192, doi:10.1175/MWR-D-14-00419.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 22042210, doi:10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joyce, R., J. Janowiak, A. Phillip, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Lebel, T., A. Diedhiou, and H. Laurent, 2003: Seasonal cycle and interannual variability of the Sahelian rainfall at hydrological scales. J. Geophys. Res., 108, 8389, doi:10.1029/2001JD001580.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2012: Regional Climate–Weather Research and Forecasting Model. Bull. Amer. Meteor. Soc., 93, 13631387, doi:10.1175/BAMS-D-11-00180.1.

    • Search Google Scholar
    • Export Citation
  • Lim, J. O. J., and S.-Y. Hong, 2005: Effects of bulk ice microphysics on the simulated monsoonal precipitation over East Asia. J. Geophys. Res., 110, D24201, doi:10.1029/2005JD006166.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., R. Healy, and L. M. Druyan, 2009: Quantifying the sensitivity of simulated climate change to model configuration. Climatic Change, 92, 275298, doi:10.1007/s10584-008-9494-x.

    • Search Google Scholar
    • Export Citation
  • Martius, O., C. Schwirez, and H. C. Davies, 2006: A refined Hovmöller diagram. Tellus, 58A, 221226, doi:10.1111/j.1600-0870.2006.00172.x.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2013: The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteor., 2013, 453521, doi:10.1155/2013/453521.

    • Search Google Scholar
    • Export Citation
  • Noble, E., L. M. Druyan, and M. Fulakeza, 2014: The sensitivity of WRF daily summertime simulations over West Africa to alternative parameterizations. Part I: African wave circulation. Mon. Wea. Rev., 142, 15881608, doi:10.1175/MWR-D-13-00194.1.

    • Search Google Scholar
    • Export Citation
  • Payne, S. W., and M. M. McGarry, 1977: The relationship of satellite inferred convective activity to easterly waves over West Africa and the adjacent ocean during phase III of GATE. Mon. Wea. Rev., 105, 413420, doi:10.1175/1520-0493(1977)1052.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, doi:10.1175/JAM2539.1.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., A. Xiu, and A. Xiu, 2003: Development of a land surface model. Part II: Data assimilation. J. Appl. Meteor. Climatol., 42, 18111822, doi:10.1175/1520-0450(2003)042<1811:DOALSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., J. Crétat, and P. Camberlin, 2011: Testing WRF capability in simulating the atmospheric water cycle over equatorial East Africa. Climate Dyn., 37, 13571379, doi:10.1007/s00382-011-1024-2.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, 2006: African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87, 17391746, doi:10.1175/BAMS-87-12-1739.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317333, doi:10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ruti, P. M., 2010: The twentieth century African easterly waves in reanalysis systems and IPCC simulations, from intra-seasonal to inter-annual variability. Climate Dyn., 35, 10991117, doi:10.1007/s00382-010-0894-z.

    • Search Google Scholar
    • Export Citation
  • Schwendike, J., and S. C. Jones, 2010: Convection in an African easterly wave over West Africa and the eastern Atlantic: A model case study of Helene (2006). Quart. J. Roy. Meteor. Soc., 136, 364396, doi:10.1002/qj.566.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Sultan, B., and S. Janicot, 2000: Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophys. Res. Lett., 27, 33533356, doi:10.1029/1999GL011285.

    • Search Google Scholar
    • Export Citation
  • Taleb, E. H., and L. M. Druyan, 2003: Relationships between rainfall and West African wave disturbances in station observations. Int. J. Climatol., 23, 305313, doi:10.1002/joc.883.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., 2013: High-resolution winter simulations of winter precipitation over the Colorado Rockies. Proc. ECMWF Workshop on Parametrization of Clouds and Precipitation, Reading, United Kingdon, ECMWF, 46 pp. [Available online at http://www.ecmwf.int/en/elibrary/12672-high-resolution-winter-simulations-winter-precipitation-over-colorado-rockies.]

  • Thorncroft, C. D., D. J. Parker, R. R. Burton, and M. Diop, 2003: The JET2000 project: Aircraft observations of the African easterly jet and African easterly waves. Bull. Amer. Meteor. Soc., 84, 337351, doi:10.1175/BAMS-84-3-337.

    • Search Google Scholar
    • Export Citation
  • Vaidya, S. S., and S. S. Singh, 2000: Applying the Betts–Miller–Janjic scheme of convection in prediction of the Indian monsoon. Wea. Forecasting, 15, 349356, doi:10.1175/1520-0434(2000)015<0349:ATBMJS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolff, J., 2011: The Developmental Testbed Center WRF reference configuration implementation plan. DTC, Boulder, CO, 5 pp. [Available online at www.dtcenter.org/config/RC_Implementation_Plan.pdf.]

  • Xue, Y., and J. Shukla, 1993: The influence of land surface properties on Sahel climate. Part I: Desertification. J. Climate, 6, 22322246, doi:10.1175/1520-0442(1993)006<2232:TIOLSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and Coauthors, 2009: The Saharan air layer and the fate of African easterly waves—NASA’s AMMA field study of tropical cyclogenesis. Bull. Amer. Meteor. Soc., 90, 11371156, doi:10.1175/2009BAMS2728.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2227 1454 88
PDF Downloads 692 169 8