Simulation of Polarimetric Radar Variables from 2013 CAPS Spring Experiment Storm-Scale Ensemble Forecasts and Evaluation of Microphysics Schemes

Bryan J. Putnam Center for Analysis and Prediction of Storms, and Advanced Radar Research Center, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Bryan J. Putnam in
Current site
Google Scholar
PubMed
Close
,
Ming Xue Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
,
Youngsun Jung Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Youngsun Jung in
Current site
Google Scholar
PubMed
Close
,
Guifu Zhang Advanced Radar Research Center, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Guifu Zhang in
Current site
Google Scholar
PubMed
Close
, and
Fanyou Kong Center for Analysis and Prediction of Storms, Norman, Oklahoma

Search for other papers by Fanyou Kong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Polarimetric radar variables are simulated from members of the 2013 Center for Analysis and Prediction of Storms (CAPS) Storm-Scale Ensemble Forecasts (SSEF) with varying microphysics (MP) schemes and compared with observations. The polarimetric variables provide information on hydrometeor types and particle size distributions (PSDs), neither of which can be obtained through reflectivity (Z) alone. The polarimetric radar simulator pays close attention to how each MP scheme [including single- (SM) and double-moment (DM) schemes] treats hydrometeor types and PSDs. The recent dual-polarization upgrade to the entire WSR-88D network provides nationwide polarimetric observations, allowing for direct evaluation of the simulated polarimetric variables.

Simulations for a mesoscale convective system (MCS) and supercell cases are examined. Five different MP schemes—Thompson, DM Milbrandt and Yau (MY), DM Morrison, WRF DM 6-category (WDM6), and WRF SM 6-category (WSM6)—are used in the ensemble forecasts. Forecasts using the partially DM Thompson and fully DM MY and Morrison schemes better replicate the MCS structure and stratiform precipitation coverage, as well as supercell structure compared to WDM6 and WSM6. Forecasts using the MY and Morrison schemes better replicate observed polarimetric signatures associated with size sorting than those using the Thompson, WDM6, and WSM6 schemes, in which such signatures are either absent or occur at abnormal locations. Several biases are suggested in these schemes, including too much wet graupel in MY, Morrison, and WDM6; a small raindrop bias in WDM6 and WSM6; and the underforecast of liquid water content in regions of pure rain for all schemes.

Corresponding author address: Ming Xue, Center for Analysis and Prediction of Storms, University of Oklahoma, 120 David Boren Blvd., Norman, OK 73072. E-mail: mxue@ou.edu

Abstract

Polarimetric radar variables are simulated from members of the 2013 Center for Analysis and Prediction of Storms (CAPS) Storm-Scale Ensemble Forecasts (SSEF) with varying microphysics (MP) schemes and compared with observations. The polarimetric variables provide information on hydrometeor types and particle size distributions (PSDs), neither of which can be obtained through reflectivity (Z) alone. The polarimetric radar simulator pays close attention to how each MP scheme [including single- (SM) and double-moment (DM) schemes] treats hydrometeor types and PSDs. The recent dual-polarization upgrade to the entire WSR-88D network provides nationwide polarimetric observations, allowing for direct evaluation of the simulated polarimetric variables.

Simulations for a mesoscale convective system (MCS) and supercell cases are examined. Five different MP schemes—Thompson, DM Milbrandt and Yau (MY), DM Morrison, WRF DM 6-category (WDM6), and WRF SM 6-category (WSM6)—are used in the ensemble forecasts. Forecasts using the partially DM Thompson and fully DM MY and Morrison schemes better replicate the MCS structure and stratiform precipitation coverage, as well as supercell structure compared to WDM6 and WSM6. Forecasts using the MY and Morrison schemes better replicate observed polarimetric signatures associated with size sorting than those using the Thompson, WDM6, and WSM6 schemes, in which such signatures are either absent or occur at abnormal locations. Several biases are suggested in these schemes, including too much wet graupel in MY, Morrison, and WDM6; a small raindrop bias in WDM6 and WSM6; and the underforecast of liquid water content in regions of pure rain for all schemes.

Corresponding author address: Ming Xue, Center for Analysis and Prediction of Storms, University of Oklahoma, 120 David Boren Blvd., Norman, OK 73072. E-mail: mxue@ou.edu
Save
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, doi:10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 636 pp.

  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cintineo, R., J. A. Otkin, M. Xue, and F. Kong, 2014: Evaluating the performance of planetary boundary layer and cloud microphysical parameterization schemes in convection-permitting ensemble forecasts using synthetic GOES-13 satellite observations. Mon. Wea. Rev., 142, 163182, doi:10.1175/MWR-D-13-00143.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, doi:10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276299, doi:10.1175/JAS-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • Du, J., J. McQueen, G. DiMego, Z. Toth, D. Jovic, B. Zhou, and H. Chuang, 2006: New dimension of NCEP Short-Range Ensemble Forecasting (SREF) system: Inclusion of WRF members. Preprints, Expert Team Meeting on Ensemble Prediction System, Exeter, United Kingdom, WMO. [Available online at https://www.wmo.int/pages/prog/www/DPFS/Meetings/ET-EPS_Exeter2006/Doc6(5).pdf.]

  • Ebert, E. E., 2008: Fuzzy verification of high-resolution gridded forecasts: A review and proposed framework. Meteor. Appl., 15, 5164, doi:10.1002/met.25.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and G. S. Forbes, 2001: Mesoscale convective systems. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 323–357.

  • Gao, J.-D., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469, doi:10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hu, M., M. Xue, and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698, doi:10.1175/MWR3092.1.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, J. Gao, and K. Brewster, 2006b: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699721, doi:10.1175/MWR3093.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Johnson, A., X. Wang, F. Kong, and M. Xue, 2013: Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts. Mon. Wea. Rev., 141, 34133425, doi:10.1175/MWR-D-13-00027.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, M., Y. Jung, D. Dawson, and M. Xue, 2016: Comparison of simulated polarimetric signatures in idealized supercell storms using two-moment bulk microphysics schemes in WRF. Mon. Wea. Rev., 144, 971996, doi:10.1175/MWR-D-15-0233.1.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 22282245, doi:10.1175/2007MWR2083.1.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, G. Zhang, and J. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 22462260, doi:10.1175/2007MWR2288.1.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146163, doi:10.1175/2009JAMC2178.1.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and M. Tong, 2012: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric data. Mon. Wea. Rev., 140, 14571475, doi:10.1175/MWR-D-11-00032.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Search Google Scholar
    • Export Citation
  • Kong, F., 2013: 2013 CAPS Spring Forecast Experiment program plan. NOAA/NWS/SPC, 24 pp. [Available online at https://hwt.nssl.noaa.gov/Spring_2013/SpringProgram2013_Plan-v5.pdf.]

  • Kong, F., and Coauthors, 2007: Preliminary analysis on the real-time storm-scale ensemble forecasts produced as a part of the NOAA Hazardous Weather Testbed 2007 Spring Experiment. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Salt Lake City, UT, Amer. Meteor. Soc., 3B.2. [Available online at https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124667.htm.]

  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, doi:10.1175/JAS-D-11-0125.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., A. Fritz, T. Smith, K. Hondl, and G. Stumpf, 2007: An automated technique to quality control radar reflectivity data. J. Appl. Meteor. Climatol., 46, 288305, doi:10.1175/JAM2460.1.

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, doi:10.1175/2008MWR2332.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., and J. R. Mecikalski, 2012: Impact of the dual-polarization Doppler radar data on two convective storms with a warm-rain radar forward operator. Mon. Wea. Rev., 140, 21472167, doi:10.1175/MWR-D-11-00090.1.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, doi:10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahale, V., G. Zhang, and M. Xue, 2014: Fuzzy logic classification of S-band polarimetric radar echoes to identify three-body scattering and improve data quality. J. Appl. Meteor. Climatol., 53, 20172033, doi:10.1175/JAMC-D-13-0358.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., 2010: On sedimentation and advection in multimoment bulk microphysics. J. Atmos. Sci., 67, 30843094, doi:10.1175/2010JAS3341.1.

    • Search Google Scholar
    • Export Citation
  • Maxwell-Garnett, J. C., 1904: Colors in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London, 203A, 385420, doi:10.1098/rsta.1904.0024.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, doi:10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., and N. Roberts, 2010: Intercomparison of spatial forecast verification methods: Identifying skillful spatial scales using the fractions skill score. Wea. Forecasting, 25, 343354, doi:10.1175/2009WAF2222260.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • NWS, 2014: The tornado outbreak of May 20, 2013. NOAA/National Weather Service. [Available online at https://www.weather.gov/oun/events-20130520.]

  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Putnam, B. J., M. Xue, Y. Jung, N. Snook, and G. Zhang, 2014: The analysis and prediction of microphysical states and polarimetric radar variables in a mesoscale convective system using double-moment microphysics, multinetwork radar data, and the ensemble Kalman filter. Mon. Wea. Rev., 142, 141162, doi:10.1175/MWR-D-13-00042.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, N., 2008: Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model. Meteor. Appl., 15, 163169, doi:10.1002/met.57.

    • Search Google Scholar
    • Export Citation
  • Roberts, N., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • ROC, 2013: WSR-88D dual polarization deployment progress. NOAA/Radar Operations Center, 6 pp. [Available online at http://www.roc.noaa.gov/WSR88D/PublicDocs/DualPol/DPstatus.pdf.]

  • Rogers, E., and Coauthors, 2009: The NCEP North American Mesoscale Modeling System: Recent changes and future plans. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 2A.4. [Available online at https://ams.confex.com/ams/23WAF19NWP/techprogram/paper_154114.htm.]

  • Ryzhkov, A., and D. S. Zrnić, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 35, 20802090, doi:10.1175/1520-0450(1996)035<2080:AORMTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C., and Coauthors, 2009: Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, doi:10.1175/2009MWR2924.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smith, T., and Coauthors, 2016: Multi-radar multi-sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, doi:10.1175/BAMS-D-14-00173.1.

    • Search Google Scholar
    • Export Citation
  • SPC, 2014a: SPC filtered storm reports for 5/19/2013. NOAA/NWS/Storm Prediction Center. [Available online at http://www.spc.noaa.gov/climo/reports/130519_rpts.html.]

  • SPC, 2014b: SPC filtered storm reports for 5/20/2013. NOAA/NWS/Storm Prediction Center. [Available online at http://www.spc.noaa.gov/climo/reports/130520_rpts.html.]

  • Sun, J., and N. A. Crook, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117132, doi:10.1175/1520-0434(2001)016<0117:RTLLWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distributions. J. Appl. Meteor. Climatol., 22, 17641775, doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., A. M. Vogelmann, H. Morrison, and J. A. Milbrandt, 2012: Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Mon. Wea. Rev., 140, 18831907, doi:10.1175/MWR-D-11-00120.1.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., W. M. Adams, and V. N. Bringi, 1991: Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions. J. Appl. Meteor., 30, 10531063, doi:10.1175/1520-0450(1991)030<1053:RATPRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wacker, U., and A. Seifert, 2001: Evolution of rain water profiles resulting from pure sedimentation: Spectral vs. parameterized description. Atmos. Res., 58, 1939, doi:10.1016/S0169-8095(01)00081-3.

    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., and Coauthors, 2007: The NOAA Hazardous Weather Testbed: Collaborative testing of ensemble and convection-allowing WRF models and subsequent transfer to operations at the Storm Prediction Center. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Salt Lake City, UT, Amer. Meteor. Soc., 6B.4. [Available online at https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124772.htm.]

  • Wheatley, D. M., N. Yussouf, and D. J. Stensrud, 2014: Ensemble Kalman filter analyses and forecasts of a severe mesoscale convective system using different choices of microphysics schemes. Mon. Wea. Rev., 142, 32433263, doi:10.1175/MWR-D-13-00260.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., D.-H. Wang, J.-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170, doi:10.1007/s00703-001-0595-6.

    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square-root Kalman filter for evaluating impact of data from radar networks on thunderstorm analysis and forecast. J. Atmos. Oceanic Technol., 23, 4666, doi:10.1175/JTECH1835.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2007: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2007 spring experiment. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Salt Lake City, UT, Amer. Meteor. Soc., 3B.1. [Available online at https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124587.htm.]

  • Xue, M., F. Kong, K. W. Thomas, J. Gao, Y. Wang, K. Brewster, and K. K. Droegemeier, 2013: Prediction of convective storms at convection-resolving 1-km resolution over continental United States with radar data assimilation: An example case of 26 May 2008 and precipitation forecasts from spring 2009. Adv. Meteor., 2013, 259052, doi:10.1155/2013/259052.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., M. Xue, Q. Cao, and D. Dawson, 2008: Diagnosing the intercept parameter for exponential raindrop size distribution based on video disdrometer observations. J. Appl. Meteor. Climatol., 47, 29832992, doi:10.1175/2008JAMC1876.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3633 2995 47
PDF Downloads 561 106 8