• Aksoy, A., F. Zhang, and J. W. Nielsen-Gammon, 2006: Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett., 33, L12801, doi:10.1029/2006GL026186.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371, doi:10.1175/MWR-D-11-00013.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, doi:10.1175/JAS-D-11-0312.1.

    • Search Google Scholar
    • Export Citation
  • Bellsky, T., J. Berwald, and L. Mitchell, 2014: Nonglobal parameter estimation using local ensemble Kalman filtering. Mon. Wea. Rev., 142, 21502164, doi:10.1175/MWR-D-13-00200.1.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, doi:10.1002/qj.49708135027.

  • Danforth, C. M., and E. Kalnay, 2008: Impact of online empirical model correction on nonlinear error growth. Geophys. Res. Lett., 35, L24805, doi:10.1029/2008GL036239.

    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., T. Nipen, X. Deng, Y. Zhou, and R. Stull, 2006: Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction. J. Geophys. Res., 111, D05308, doi:10.1029/2005JD006311.

    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., and Coauthors, 2008: A Kalman-filter bias correction method applied to deterministic, ensemble averaged and probabilistic forecasts of surface ozone. Tellus, 60B, 238249, doi:10.1111/j.1600-0889.2007.00332.x.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., F. W. Dobson, S. D. Smith, and R. J. Anderson, 1993: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23, 21432149, doi:10.1175/1520-0485(1993)023<2143:OTDOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Draxl, C., A. Hahmann, A. Peña, and G. Giebel, 2014: Evaluating winds and vertical wind shear from Weather Research and Forecasting Model forecasts using seven planetary boundary layer schemes. Wind Energy, 17, 3955, doi:10.1002/we.1555.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and C. W. Fairall, 1998: Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J. Atmos. Sci., 55, 23112328, doi:10.1175/1520-0469(1998)055<2311:SRITMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, doi:10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., K. B. Katsaros, and K. Richter, 1986: Variation of the drag coefficient and its dependence on sea state. J. Geophys. Res., 91, 76677679, doi:10.1029/JC091iC06p07667.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, J. A. Hansen, D. P. Schanen, and B. M. Griffin, 2007: Elucidating model inadequacies in a cloud parameterization by use of an ensemble-based calibration framework. Mon. Wea. Rev., 135, 40774096, doi:10.1175/2007MWR2008.1.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and C. Snyder, 2005: Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL. Mon. Wea. Rev., 133, 32603275, doi:10.1175/MWR3022.1.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and D. Rostkier-Edelstein, 2007: PBL state estimation with surface observations, a column model, and an ensemble filter. Mon. Wea. Rev., 135, 29582972, doi:10.1175/MWR3443.1.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and W. M. Angevine, 2013: Ensemble data assimilation to characterize surface-layer errors in numerical weather prediction models. Mon. Wea. Rev., 141, 18041821, doi:10.1175/MWR-D-12-00280.1.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., J. L. Anderson, and M. Pagowski, 2007: Improved vertical covariance estimates for ensemble-filter assimilation of near-surface observations. Mon. Wea. Rev., 135, 10211036, doi:10.1175/MWR3333.1.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., and S. E. Belcher, 2008: Wave-driven wind jets in the marine atmospheric boundary layer. J. Atmos. Sci., 65, 26462660, doi:10.1175/2007JAS2562.1.

    • Search Google Scholar
    • Export Citation
  • Hare, J. E., T. Hara, J. B. Edson, and J. M. Wilczak, 1997: A similarity analysis of the structure of airflow over surface waves. J. Phys. Oceanogr., 27, 10181037, doi:10.1175/1520-0485(1997)027<1018:ASAOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Izumi, Y., 1971: Kansas 1968 field program data report. Air Force Cambridge Research Laboratory Rep. AFCRL-72-0041, Environmental Research Paper 379, Hanscom AFB, MA, 79 pp.

  • Jiménez, P. A., and J. Dudhia, 2014: On the wind stress formulation over shallow waters in atmospheric models. Geosci. Model Dev. Discuss., 7, 90639077, doi:10.5194/gmdd-7-9063-2014.

    • Search Google Scholar
    • Export Citation
  • Jonassen, M. O., H. Ólafsson, H. Ágústsson, Ó. Rögnvaldsson, and J. Reuder, 2012: Improving high-resolution numerical weather simulations by assimilating data from an unmanned aerial system. Mon. Wea. Rev., 140, 37343756, doi:10.1175/MWR-D-11-00344.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82, 3545, doi:10.1115/1.3662552.

  • LaCasse, K. M., M. E. Splitt, S. M. Lazarus, and W. M. Lapenta, 2008: The impact of high-resolution sea surface temperatures on the simulated nocturnal Florida marine boundary layer. Mon. Wea. Rev., 136, 13491372, doi:10.1175/2007MWR2167.1.

    • Search Google Scholar
    • Export Citation
  • Lumley, J. L., and H. A. Panofsky, 1964: The Structure of Atmospheric Turbulence. John Wiley and Sons, 229 pp.

  • Mlawer, E. J., S. T. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geofiz. Inst., 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, doi:10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • NCAR, 1980: NCEP ADP operational global upper air observations, December 1972 – February 2007. Research Data Archive, Computational and Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO, accessed 1 November 2014. [Available online at http://rda.ucar.edu/datasets/ds353.4/.]

  • NCAR, 2004: NCEP ADP global surface observational weather data, October 1999–continuing. Research Data Archive, Computational and Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO, accessed 1 November 2014. [Available online at http:/rda.ucar.edu/datasets/ds461.0.]

  • Nielsen-Gammon, J. W., X.-M. Hu, F. Zhang, and J. E. Pleim, 2010: Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation. Mon. Wea. Rev., 138, 34003417, doi:10.1175/2010MWR3292.1.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1946: Turbulence in an atmosphere with non-uniform temperature. Tr. Inst. Teor. Geofiz. Akad. Nauk. SSSR, 1, 95115.

  • Olsen, B. T., A. Hahmann, A. M. Sempreviva, J. Badger, and H. Ejsing Joergensen, 2015: Simulating wind energy resources with mesoscale models: Intercomparison of state-of-the-art models. Proc. EWEA Annual Conf. and Exhibition 2015, Paris, France, European Wind Energy Association. [Available online at http://proceedings.ewea.org/annual2015/conference/programme/info2.php?id2=630.]

  • Pichugina, Y. L., R. M. Banta, W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, 2012: Doppler lidar–based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications. J. Appl. Meteor. Climatol., 51, 327349, doi:10.1175/JAMC-D-11-040.1.

    • Search Google Scholar
    • Export Citation
  • Rieder, K. F., J. A. Smith, and R. A. Weller, 1994: Observed directional characteristics of the wind, wind stress, and surface waves on the open ocean. J. Geophys. Res., 99, 22 58922 596, doi:10.1029/94JC02215.

    • Search Google Scholar
    • Export Citation
  • Rostkier-Edelstein, D., and J. P. Hacker, 2010: The roles of surface-observation ensemble assimilation and model complexity for nowcasting of PBL profiles: A factor separation analysis. Wea. Forecasting, 25, 16701690, doi:10.1175/2010WAF2222435.1.

    • Search Google Scholar
    • Export Citation
  • Ruiz, J., and M. Pulido, 2015: Parameter estimation using ensemble-based data assimilation in the presence of model error. Mon. Wea. Rev., 143, 15681582, doi:10.1175/MWR-D-14-00017.1.

    • Search Google Scholar
    • Export Citation
  • Ruiz, J., M. Pulido, and T. Miyoshi, 2013: Estimating model parameters with ensemble-based data assimilation: A review. J. Meteor. Soc. Japan, 91, 7999, doi:10.2151/jmsj.2013-201.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sanz Rodrigo, J., 2011: Flux-profile characterization of the offshore ABL for the parameterization of CFD models. Proc. EWEA Offshore 2011 Conf. and Exhibition, Amsterdam, Netherlands, European Wind Energy Association. [Available online at http://www.ewea.org/offshore2011/index.php?id=152.]

  • Sjöblom, A., and A.-S. Smedman, 2002: The turbulent kinetic energy budget in the marine atmospheric surface layer. J. Geophys. Res., 107, 3142, doi:10.1029/2001JC001016.

    • Search Google Scholar
    • Export Citation
  • Sjöblom, A., and A.-S. Smedman, 2003: Vertical structure in the marine atmospheric boundary layer and its implication for the inertial dissipation method. Bound.-Layer Meteor., 109, 125, doi:10.1023/A:1025407109324.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Smedman, A.-S., X. G. Larsén, U. Högström, K. K. Kahma, and H. Pettersson, 2003: Effect of sea state on the momentum exchange over the sea during neutral conditions. J. Geophys. Res., 108, 3367, doi:10.1029/2002JC001526.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., U. Högström, E. Sahleé, W. M. Drennan, K. K. Kahma, H. Pettersson, and F. Zhang, 2009: Observational study of marine atmospheric boundary layer characteristics during swell. J. Atmos. Sci., 66, 27472763, doi:10.1175/2009JAS2952.1.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 12501277, doi:10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33, 416434, doi:10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., N. L. Seaman, and F. S. Binkowski, 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: Effects of data assimilation within the planetary boundary layer. Mon. Wea. Rev., 119, 734754, doi:10.1175/1520-0493(1991)119<0734:UOFDDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams, 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci., 65, 12251245, doi:10.1175/2007JAS2427.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150, doi:10.1023/A:1018966204465.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and T. Janjić, 2005: Twenty-four-hour observations of the marine boundary layer using shipborne NOAA high-resolution Doppler lidar. J. Appl. Meteor., 44, 17231744, doi:10.1175/JAM2296.1.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 1973: On surface layer turbulence. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 101–149.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 4 4 4

Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model

View More View Less
  • 1 Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado
  • | 2 National Renewable Energy Laboratory, Golden, Colorado
  • | 3 Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado
  • | 4 Centro Nacional de Energías Renovables, Sarriguren, Spain
Restricted access

Abstract

A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly because of a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL.

In this study the WRF single-column model (SCM) is coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART) to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts. Combining two datasets that provide lateral forcing for the SCM and two methods for determining , the time-varying sea surface roughness length, four WRF-SCM/DART experiments are conducted during the October–December 2006 period. The two methods for determining are the default Fairall-adjusted Charnock formulation in WRF and use of the parameter estimation techniques to estimate in DART. Using DART to estimate is found to reduce 1-h forecast errors of wind speed over the Charnock–Fairall ensembles by 4%–22%. However, parameter estimation of does not simultaneously reduce turbulent flux forecast errors, indicating limitations of this approach and the need for new marine ABL parameterizations.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author e-mail: Jared A. Lee, jaredlee@ucar.edu

Abstract

A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly because of a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL.

In this study the WRF single-column model (SCM) is coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART) to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts. Combining two datasets that provide lateral forcing for the SCM and two methods for determining , the time-varying sea surface roughness length, four WRF-SCM/DART experiments are conducted during the October–December 2006 period. The two methods for determining are the default Fairall-adjusted Charnock formulation in WRF and use of the parameter estimation techniques to estimate in DART. Using DART to estimate is found to reduce 1-h forecast errors of wind speed over the Charnock–Fairall ensembles by 4%–22%. However, parameter estimation of does not simultaneously reduce turbulent flux forecast errors, indicating limitations of this approach and the need for new marine ABL parameterizations.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author e-mail: Jared A. Lee, jaredlee@ucar.edu
Save