The Development of a Terrain-Resolving Scheme for the Forward Model and Its Adjoint in the Four-Dimensional Variational Doppler Radar Analysis System (VDRAS)

Sheng-Lun Tai Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan

Search for other papers by Sheng-Lun Tai in
Current site
Google Scholar
PubMed
Close
,
Yu-Chieng Liou Department of Atmospheric Sciences, National Central University, Taoyuan, and Taiwan Typhoon and Flood Research Institute, Taipei, Taiwan

Search for other papers by Yu-Chieng Liou in
Current site
Google Scholar
PubMed
Close
,
Juanzhen Sun National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Juanzhen Sun in
Current site
Google Scholar
PubMed
Close
, and
Shao-Fan Chang Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan

Search for other papers by Shao-Fan Chang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The four-dimensional Variational Doppler Radar Analysis System (VDRAS) developed at the National Center for Atmospheric Research (NCAR) is significantly improved by implementing a terrain-resolving scheme to its forward model and adjoint based on the ghost cell immersed boundary method (GCIBM), which allows the topographic effects to be considered without the necessity to rebuild the model on a terrain-following coordinate system. The new system, called IBM_VDRAS, is able to perform forward forecast and backward adjoint model integration over nonflat lower boundaries, ranging from mountains with smooth slopes to buildings with sharp surfaces. To evaluate the performance of the forward model over complex terrain, idealized numerical experiments of a two-dimensional linear mountain wave and three-dimensional leeside vortices are first conducted, followed by a comparison with a simulation by the Weather Research and Forecasting (WRF) Model. An observing system simulation experiment is also conducted with the assimilation of simulated radar data to examine the ability of IBM_VDRAS in analyzing orographically forced moist convection. It is shown that the IBM_VDRAS can retrieve terrain-influenced three-dimensional meteorological fields including winds, thermodynamic, and microphysical parameters with reasonable accuracy. The new system, with the advanced radar data assimilation capability and the GCIBM terrain scheme, has the potential to be used for studying the evolution of convective weather systems under the influence of terrain.

Corresponding author e-mail: Dr. Yu-Chieng Liou, tyliou@atm.ncu.edu.tw

Abstract

The four-dimensional Variational Doppler Radar Analysis System (VDRAS) developed at the National Center for Atmospheric Research (NCAR) is significantly improved by implementing a terrain-resolving scheme to its forward model and adjoint based on the ghost cell immersed boundary method (GCIBM), which allows the topographic effects to be considered without the necessity to rebuild the model on a terrain-following coordinate system. The new system, called IBM_VDRAS, is able to perform forward forecast and backward adjoint model integration over nonflat lower boundaries, ranging from mountains with smooth slopes to buildings with sharp surfaces. To evaluate the performance of the forward model over complex terrain, idealized numerical experiments of a two-dimensional linear mountain wave and three-dimensional leeside vortices are first conducted, followed by a comparison with a simulation by the Weather Research and Forecasting (WRF) Model. An observing system simulation experiment is also conducted with the assimilation of simulated radar data to examine the ability of IBM_VDRAS in analyzing orographically forced moist convection. It is shown that the IBM_VDRAS can retrieve terrain-influenced three-dimensional meteorological fields including winds, thermodynamic, and microphysical parameters with reasonable accuracy. The new system, with the advanced radar data assimilation capability and the GCIBM terrain scheme, has the potential to be used for studying the evolution of convective weather systems under the influence of terrain.

Corresponding author e-mail: Dr. Yu-Chieng Liou, tyliou@atm.ncu.edu.tw
Save
  • Ballard, S. P., Z. Li, D. Simonin, and J.-F. Caron, 2016: Performance of 4D-Var NWP-based nowcasting of precipitation at the Met Office for summer 2012. Quart. J. Roy. Meteor. Soc., 142, 472–487, doi:10.1002/qj.2665.

    • Search Google Scholar
    • Export Citation
  • Chang, S.-F., J. Sun, Y.-C. Liou, S.-L. Tai, and C.-Y. Yang, 2014: The influence of erroneous background, beam-blocking and microphysical nonlinearity on the application of a four-dimensional variational Doppler radar data assimilation system for quantitative precipitation forecasts. Meteor. Appl., 21, 444–458, doi:10.1002/met.1439.

    • Search Google Scholar
    • Export Citation
  • Chang, S.-F., Y.-C. Liou, J. Sun, and S.-L. Tai, 2016: The implementation of the ice phase microphysical process into a four-dimensional Variational Doppler Radar Analysis System (VDRAS) and its impact on parameter retrieval and quantitative precipitation nowcasting. J. Atmos. Sci., 73, 1015–1038, doi:10.1175/JAS-D-15-0184.1.

    • Search Google Scholar
    • Export Citation
  • Crook, A., and J. Sun, 2002: Assimilating radar, surface, and profiler data for the Sydney 2000 forecast demonstration project. J. Atmos. Oceanic Technol., 19, 888–898, doi:10.1175/1520-0426(2002)019<0888:ARSAPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crook, A., and J. Sun, 2004: Analysis and forecasting of the low-level wind during the Sydney 2000 Forecast Demonstration Project. Wea. Forecasting, 19, 151–167, doi:10.1175/1520-0434(2004)019<0151:AAFOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 2341–2361, doi:10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franke, R., 1982: Scattered data interpolation: Tests of some methods. Math. Comput., 38, 181–200.

  • Friedrich, K., E. Kalina, J. Aikins, M. Steiner, D. Gochis, P. Kurera, K. Ikeda, and J. Sun, 2016: Raindrop size distribution and rain characteristics during the 2013 Great Colorado Flood. J. Hydrometeor., 17, 53–72, doi:10.1175/JHM-D-14-0184.1.

    • Search Google Scholar
    • Export Citation
  • Gao, T., Y. H. Tseng, and X. Y. Lu, 2007: An improved hybrid Cartesian/immersed boundary method for fluid-solid flows. Int. J. Numer. Methods Fluids, 55, 1189–1211, doi:10.1002/fld.1522.

    • Search Google Scholar
    • Export Citation
  • Gochis, D., and Coauthors, 2015: The Great Colorado Flood of September 2013. Bull. Amer. Meteor. Soc., 96, 1461–1487, doi:10.1175/BAMS-D-13-00241.1.

    • Search Google Scholar
    • Export Citation
  • Hayden, C. M., and R. J. Purser, 1995: Recursive filter objective analysis of meteorological fields: Applications to NESDIS operational processing. J. Appl. Meteor., 34, 3–15, doi:10.1175/1520-0450-34.1.3.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Huang, C.-Y., 2000: A forward-in-time anelastic nonhydrostatic model in a terrain-following coordinate. Mon. Wea. Rev., 128, 2108–2133, doi:10.1175/1520-0493(2000)128<2108:AFITAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 1977: Pressure gradient force and advection scheme used for forecasting with steep and small scale topography. Beitr. Phys. Atmos., 50, 186–189.

    • Search Google Scholar
    • Export Citation
  • Kawabata, T., T. Kuroda, H. Seko, and K. Saito, 2011: A cloud-resolving 4DVAR assimilation experiment for a local heavy rainfall event in the Tokyo metropolitan area. Mon. Wea. Rev., 139, 1911–1931, doi:10.1175/2011MWR3428.1.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

  • Klemp, J., W. Skamarock, and O. Fuhrer, 2003: Numerical consistency of metric terms in terrain-following coordinates. Mon. Wea. Rev., 131, 1229–1239, doi:10.1175/1520-0493(2003)131<1229:NCOMTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lim, E., and J. Sun, 2010: A velocity dealiasing technique using rapidly updated analysis from a four-dimensional Variational Doppler Radar Data Assimilation System. J. Atmos. Oceanic Technol., 27, 1140–1152, doi:10.1175/2010JTECHA1300.1.

    • Search Google Scholar
    • Export Citation
  • Lundquist, K. A., F. K. Chow, and J. K. Lundquist, 2010: An immersed boundary method for the Weather Research and Forecasting model. Mon. Wea. Rev., 138, 796–817, doi:10.1175/2009MWR2990.1.

    • Search Google Scholar
    • Export Citation
  • Lundquist, K. A., F. K. Chow, and J. K. Lundquist, 2012: An immersed boundary method enabling large-eddy simulations of flow over complex terrain in the WRF Model. Mon. Wea. Rev., 140, 3936–3955, doi:10.1175/MWR-D-11-00311.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatidudes. John Wiley & Sons, 407 pp.

  • Mohd-Yusof, J., 1997: Combined immersed boundary/b-spline methods for simulations of flow in complex geometry. Center for Turbulence Research, Annual Research Briefs, NASA Ames/Stanford University, 317–327.

  • Navon, I. M., X. Zou, J. Derber, and J. Sela, 1992: Variational data assimilation with an adiabatic version of the NMC spectral model. Mon. Wea. Rev., 120, 1433–1446, doi:10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peskin, C., 1972: Flow patterns around heart valves: A numerical method. J. Comput. Phys., 10, 252–271, doi:10.1016/0021-9991(72)90065-4.

    • Search Google Scholar
    • Export Citation
  • Phillips, N., 1957: A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14, 184–185, doi:10.1175/1520-0469(1957)014<0184:ACSHSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and R. A. Houze Jr., 2007: Lessons on orographic precipitation from the Mesoscale Alpine Programme. Quart. J. Roy. Meteor. Soc., 133, 811–830, doi:10.1002/qj.67.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and D. R. Durran, 1997: Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci., 54, 534–554, doi:10.1175/1520-0469(1997)054<0534:VFAVSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32A, 348–364, doi:10.1111/j.2153-3490.1980.tb00962.x.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 1154–1164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793–813, doi:10.1175/MWR2887.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661, doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835–852, doi:10.1175/1520-0469(1998)055<0835:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117–132, doi:10.1175/1520-0434(2001)016<0117:RTLLWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Wea. Rev., 136, 2364–2388, doi:10.1175/2007MWR2205.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and H. Wang, 2013: Radar data assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a squall line over the U.S. Great Plains. Mon. Wea. Rev., 141, 2245–2264, doi:10.1175/MWR-D-12-00169.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., M. Chen, and Y. Wang, 2010: Frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 Forecast Demonstration Project. Wea. Forecasting, 25, 1715–1735, doi:10.1175/2010WAF2222336.1.

    • Search Google Scholar
    • Export Citation
  • Tai, S.-L., Y.-C. Liou, J. Sun, S.-F. Chang, and M.-C. Kuo, 2011: Precipitation forecasting using Doppler radar data, a cloud model with adjoint, and the Weather Research and Forecasting model: Real case studies during SoWMEX in Taiwan. Wea. Forecasting, 26, 975–992, doi:10.1175/WAF-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Tseng, Y., and J. Ferziger, 2003: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192, 593–623, doi:10.1016/j.jcp.2003.07.024.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, X. Zhang, X. Huang, and T. Auligne, 2013: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 2224–2244, doi:10.1175/MWR-D-12-00168.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. W., L. J. Bennett, L. J. Miller, J. V. Baelen, P. D. Girolamo, A. M. Blyth, and T. J. Hertneky, 2014: An observational and modeling study of the processes leading to deep, moist convection in complex terrain. Mon. Wea. Rev., 142, 2687–2708, doi:10.1175/MWR-D-13-00216.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2008: The Convective and Orographically-induced Precipitation Study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc., 89, 1477–1486, doi:10.1175/2008BAMS2367.1.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, H., and T. Satomura, 2010: Non-hydrostatic atmospheric modelling using a combined Cartesian grid. Mon. Wea. Rev., 138, 3932–3945, doi:10.1175/2010MWR3252.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5375 4686 124
PDF Downloads 508 121 17