• Boustead, J. M., B. E. Mayes, W. Gargan, J. L. Leighton, G. Phillips, and P. N. Schumacher, 2013: Discriminating environmental conditions for significant warm sector and boundary tornadoes in parts of the Great Plains. Wea. Forecasting, 28, 14981523, doi:10.1175/WAF-D-12-00102.1.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, doi:10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carr, J. A., 1952: A preliminary report on the tornadoes of March 21–22, 1952. Mon. Wea. Rev., 80, 5058, doi:10.1175/1520-0493(1952)080<0050:APROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S., S. Weiss, J. Kain, S. Corfidi, R. Rabin, and J. Levit, 2010: Revisiting the 3–4 April 1974 Super Outbreak of tornadoes. Wea. Forecasting, 25, 465510, doi:10.1175/2009WAF2222297.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, doi:10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebita, A., and Coauthors, 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, doi:10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Fujita, T., D. L. Bradbury, and C. F. Van Thullenar, 1970: Palm Sunday tornadoes of April 11, 1965. Mon. Wea. Rev., 98, 2969, doi:10.1175/1520-0493(1970)098<0029:PSTOA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaffin, D. M., and S. S. Parker, 2006: A climatology of synoptic conditions associated with significant tornadoes over the southern Appalachian region. Wea. Forecasting, 21, 735751, doi:10.1175/WAF951.1.

    • Search Google Scholar
    • Export Citation
  • Galway, J. G., 1975: Relationship of tornado deaths to severe weather watch areas. Mon. Wea. Rev., 103, 737741, doi:10.1175/1520-0493(1975)103<0737:ROTDTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Galway, J. G., 1977: Some climatological aspects of tornado outbreaks. Mon. Wea. Rev., 105, 477484, doi:10.1175/1520-0493(1977)105<0477:SCAOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grazulis, T. P., 1993: Significant Tornadoes 1680–1991: A Chronology and Analysis of Events. Environmental Films, 1340 pp.

  • Hamill, T. M., R. S. Schneider, H. E. Brooks, G. S. Forbes, H. B. Bluestein, M. Steinberg, D. Melendez, and R. M. Dole, 2005: The May 2003 extended tornado outbreak. Bull. Amer. Meteor. Soc., 86, 531542, doi:10.1175/BAMS-86-4-531.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier, 535 pp.

  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Johns, R. H., and C. A. Doswell, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, doi:10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., B. D. Schmidt, and D. G. Duffy, 1992: Quasigeostrophic vertical motions diagnosed from along- and cross-isentrope components of the Q vector. Mon. Wea. Rev., 120, 731741, doi:10.1175/1520-0493(1992)120<0731:QVMDFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1999: Quasigeostrophic forcing of ascent in the occluded sector of cyclones and the trowel airstream. Mon. Wea. Rev., 127, 7088, doi:10.1175/1520-0493(1999)127<0070:QFOAIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mercer, A. E., C. M. Shafer, C. A. Doswell, L. M. Leslie, and M. B. Richman, 2009: Objective classification of tornadic and nontornadic severe weather outbreaks. Mon. Wea. Rev., 137, 43554368, doi:10.1175/2009MWR2897.1.

    • Search Google Scholar
    • Export Citation
  • Mercer, A. E., C. M. Shafer, C. A. Doswell III, L. M. Leslie, and M. B. Richman, 2012: Synoptic composites of tornadic and nontornadic outbreaks. Mon. Wea. Rev., 140, 25902608, doi:10.1175/MWR-D-12-00029.1.

    • Search Google Scholar
    • Export Citation
  • Miller, R., 1972: Notes on analysis and severe-storm forecasting procedures of the Air Force Global Weather Center. Air Weather Service Tech. Rep. 200, rev. ed. Air Weather Service, Scott Air Force Base, IL, 184 pp.

  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada Level-3 model: Its numerical stability and application to a resional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Newton, C. W., 1967: Severe convective storms. Advances in Geophysics, Vol. 12, Academic Press, 257–303.

  • Roebber, P. J., D. M. Schultz, and R. Romero, 2002: Synoptic regulation of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 399429, doi:10.1175/1520-0434(2002)017<0399:SROTMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and F. Zhang, 2007: Baroclinic development within zonally-varying flows. Quart. J. Roy. Meteor. Soc., 133, 11011112, doi:10.1002/qj.87.

    • Search Google Scholar
    • Export Citation
  • Shafer, C. M., A. E. Mercer, C. A. Doswell, M. B. Richman, and L. M. Leslie, 2009: Evaluation of WRF forecasts of tornadic and nontornadic outbreaks when initialized with synopticscale input. Mon. Wea. Rev., 137, 12501271, doi:10.1175/2008MWR2597.1.

    • Search Google Scholar
    • Export Citation
  • Shafer, C. M., A. E. Mercer, L. M. Leslie, M. B. Richman, and C. A. Doswell, 2010: Evaluation of WRF Model simulations of tornadic and nontornadic outbreaks that occur in the spring and fall. Mon. Wea. Rev., 138, 40984119, doi:10.1175/2010MWR3269.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J. V. Cortinas, and H. E. Brooks, 1997: Discriminating between tornadic and nontornadic thunderstorms using mesoscale model output. Wea. Forecasting, 12, 613632, doi:10.1175/1520-0434(1997)012<0613:DBTANT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and R. Edwards, 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15, 682699, doi:10.1175/1520-0434(2000)015<0682:AOOECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tochimoto, E., and H. Niino, 2016: Structural and environmental characteristics of extratropical cyclones that cause tornado outbreaks in the warm sector: A composite study. Mon. Wea. Rev., 144, 945969, doi:10.1175/MWR-D-15-0015.1.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., 1973: A stability study of medium-scale disturbances with inclusion of convective effects. J. Meteor. Soc. Japan, 51, 110.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., R. Fehlmann, and D. Lüthi, 1998: The effect of barotropic shear on upper-level induced cyclogenesis: Semigeostrophic and primitive equation numerical simulations. J. Atmos. Sci., 55, 20802094, doi:10.1175/1520-0469(1998)055<2080:TEOBSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanase, W., and H. Niino, 2004: Structure and energetics of non-geostrophic non-hydrostatic baroclinic instability wave with and without convective heating. J. Meteor. Soc. Japan, 82, 12611279, doi:10.2151/jmsj.2004.1261.

    • Search Google Scholar
    • Export Citation
  • Yanase, W., and H. Niino, 2007: Dependence of polar low development on baroclinicity and physical processes: An idealized high-resolution numerical experiment. J. Atmos. Sci., 64, 30443067, doi:10.1175/JAS4001.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 5 5 5

Structural and Environmental Characteristics of Extratropical Cyclones Associated with Tornado Outbreaks in the Warm Sector: An Idealized Numerical Study

View More View Less
  • 1 Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
Restricted access

Abstract

To clarify the effects of the horizontal shear of the jet stream on the structure and environment of extratropical cyclones that are accompanied by tornado outbreaks (OCs) and those that are not (NOCs), two idealized numerical experiments are performed. The experiments (OC-CTL and NOC-CTL) adopt the basic states taken from the corresponding composites of reanalysis data (JRA-55), except that the humidity field in both cases is taken from the OC composite.

The simulated cyclone in OC-CTL exhibits a more meridionally elongated structure and stronger low-level wind in the southeast quadrant of the cyclone center, resulting in larger values of storm relative environmental helicity (SREH) than those in NOC-CTL. These results are consistent with the characteristics of the cyclones found for OCs and NOCs in the authors’ composite study. The distributions of surface-based convective available potential energy (SBCAPE) show no notable differences between OC-CTL and NOC-CTL, while those of CAPE based on the most unstable air parcel (MUCAPE) show some differences.

A sensitivity experiment without moist processes such as condensation heating and evaporative cooling shows that the differences in the cyclone structure and environmental parameters between OCs and NOCs can be qualitatively explained by the dry dynamics. However, inclusion of moist processes results in notably larger differences.

Corresponding author e-mail: Eigo Tochimoto, tochimoto@aori.u-tokyo.ac.jp

Denotes Open Access content.

Abstract

To clarify the effects of the horizontal shear of the jet stream on the structure and environment of extratropical cyclones that are accompanied by tornado outbreaks (OCs) and those that are not (NOCs), two idealized numerical experiments are performed. The experiments (OC-CTL and NOC-CTL) adopt the basic states taken from the corresponding composites of reanalysis data (JRA-55), except that the humidity field in both cases is taken from the OC composite.

The simulated cyclone in OC-CTL exhibits a more meridionally elongated structure and stronger low-level wind in the southeast quadrant of the cyclone center, resulting in larger values of storm relative environmental helicity (SREH) than those in NOC-CTL. These results are consistent with the characteristics of the cyclones found for OCs and NOCs in the authors’ composite study. The distributions of surface-based convective available potential energy (SBCAPE) show no notable differences between OC-CTL and NOC-CTL, while those of CAPE based on the most unstable air parcel (MUCAPE) show some differences.

A sensitivity experiment without moist processes such as condensation heating and evaporative cooling shows that the differences in the cyclone structure and environmental parameters between OCs and NOCs can be qualitatively explained by the dry dynamics. However, inclusion of moist processes results in notably larger differences.

Corresponding author e-mail: Eigo Tochimoto, tochimoto@aori.u-tokyo.ac.jp

Denotes Open Access content.

Save