On the Initiation of an Isolated Heavy-Rain-Producing Storm near the Central Urban Area of Beijing Metropolitan Region

Huiqi Li Key Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Huiqi Li in
Current site
Google Scholar
PubMed
Close
,
Xiaopeng Cui Key Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xiaopeng Cui in
Current site
Google Scholar
PubMed
Close
, and
Da-Lin Zhang State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Da-Lin Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An isolated heavy-rain-producing thunderstorm was unexpectedly initiated in the afternoon of 9 August 2011 near the central urban area of the Beijing metropolitan region (BMR), which occurred at some distance from BMR’s northwestern mountains and two preexisting mesoscale convective systems (MCSs) to the west and north, respectively. An observational analysis shows the presence of unfavorable quasigeostrophic conditions but a favorable regional environment for the convective initiation (CI) of thunderstorms. A nested-grid cloud-resolving model simulation of the case with the finest 1.333-km resolution is performed to examine the CI of the thunderstorm and its subsequent growth. Results reveal that the growth of the mixed boundary layer, enhanced by the urban heat island (UHI) effects, accounts for the formation of a thin layer of clouds at the boundary layer top at the CI site and nearby locations as well as on the upslope sides of the mountains. It takes about 36 min for the latent-heating-driven updraft to penetrate through a 1-km “lid” layer above before the formation of the thunderstorm. However, this storm may not take place without sustained low-level convergence of a prevailing southerly flow with a northerly flow ahead of a cold outflow boundary associated with the northern MCS. The latter is driven by the latent heating of the shallow layer of clouds during the earlier CI stage and then a cold mesohigh underneath the northern MCS. This study indicates the important roles of the urban effects, mountain morphology, and convectively generated pressure perturbations in determining the CI location and timing of isolated thunderstorms during the summer months.

Corresponding author address: Dr. Xiaopeng Cui, Key Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail: xpcui@mail.iap.ac.cn

Abstract

An isolated heavy-rain-producing thunderstorm was unexpectedly initiated in the afternoon of 9 August 2011 near the central urban area of the Beijing metropolitan region (BMR), which occurred at some distance from BMR’s northwestern mountains and two preexisting mesoscale convective systems (MCSs) to the west and north, respectively. An observational analysis shows the presence of unfavorable quasigeostrophic conditions but a favorable regional environment for the convective initiation (CI) of thunderstorms. A nested-grid cloud-resolving model simulation of the case with the finest 1.333-km resolution is performed to examine the CI of the thunderstorm and its subsequent growth. Results reveal that the growth of the mixed boundary layer, enhanced by the urban heat island (UHI) effects, accounts for the formation of a thin layer of clouds at the boundary layer top at the CI site and nearby locations as well as on the upslope sides of the mountains. It takes about 36 min for the latent-heating-driven updraft to penetrate through a 1-km “lid” layer above before the formation of the thunderstorm. However, this storm may not take place without sustained low-level convergence of a prevailing southerly flow with a northerly flow ahead of a cold outflow boundary associated with the northern MCS. The latter is driven by the latent heating of the shallow layer of clouds during the earlier CI stage and then a cold mesohigh underneath the northern MCS. This study indicates the important roles of the urban effects, mountain morphology, and convectively generated pressure perturbations in determining the CI location and timing of isolated thunderstorms during the summer months.

Corresponding author address: Dr. Xiaopeng Cui, Key Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail: xpcui@mail.iap.ac.cn
Save
  • Baker, R. D., B. H. Lynn, A. Boone, W.-K. Tao, and J. Simpson, 2001: The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. J. Hydrometeor., 2, 193211, doi:10.1175/1525-7541(2001)002<0193:TIOSMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., and Coauthors, 2011: Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b. Quart. J. Roy. Meteor. Soc., 137, 81100, doi:10.1002/qj.758.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 83, 283290.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Coauthors, 2007: The Convective Storm Initiation Project. Bull. Amer. Meteor. Soc., 88, 19391955, doi:10.1175/BAMS-88-12-1939.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and H. R. Rodebush, 1948: Causes of thunderstorms of the Florida Peninsula. J. Meteor., 5, 275280, doi:10.1175/1520-0469(1948)005<0275:COTOTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, C. A., and R. W. Arritt, 1995: Numerical simulations of the effect of soil moisture and vegetation cover on the development of deep convection. J. Appl. Meteor., 34, 20292045, doi:10.1175/1520-0450(1995)034<2029:NSOTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., C. L. Ziegler, and H. B. Bluestein, 1993: Investigation of the dryline and convective storms initiated along the dryline: Field experiments during COPS-91. Bull. Amer. Meteor. Soc., 74, 21332145, doi:10.1175/1520-0477(1993)074<2133:IOTDAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1992: The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteor. Atmos. Phys., 49, 93106, doi:10.1007/BF01025402.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, doi:10.1175/JAS3810.1.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and C. A. Ray, 1997: Mesoanalysis of summertime convergence zones in central and eastern North Carolina. Wea. Forecasting, 12, 5677, doi:10.1175/1520-0434(1997)012<0056:MOSCZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lean, H. W., N. M. Roberts, P. A. Clark, and C. Morcrette, 2009: The surprising role of orography in the initiation of an isolated thunderstorm in southern England. Mon. Wea. Rev., 137, 30263046, doi:10.1175/2009MWR2743.1.

    • Search Google Scholar
    • Export Citation
  • Lima, M. A., and J. W. Wilson, 2008: Convective storm initiation in a moist tropical environment. Mon. Wea. Rev., 136, 18471864, doi:10.1175/2007MWR2279.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., S. Chiao, T.-A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633660, doi:10.1175/1520-0434(2001)016<0633:SCIFHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., J. W. Wilson, and N. A. Crook, 1993: The utility of sounding and mesonet data to nowcast thunderstorm initiation. Wea. Forecasting, 8, 132146, doi:10.1175/1520-0434(1993)008<0132:TUOSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murphey, H. V., R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, 2006: Dryline on 19 June 2002 during IHOP. Part I: Airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation. Mon. Wea. Rev., 134, 406430, doi:10.1175/MWR3063.1.

    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1976: Some uses of high resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 14741483, doi:10.1175/1520-0493(1976)104<1474:SUOHRG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1966: A study of thunderstorm formation along dry lines. J. Appl. Meteor., 5, 5863, doi:10.1175/1520-0450(1966)005<0058:ASOTFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryu, Y.-H., J. A. Smith, E. Bou-Zeid, and M. L. Baeck, 2016: The influence of land surface heterogeneities on heavy convective rainfall in the Baltimore–Washington metropolitan area. Mon. Wea. Rev., 144, 553573, doi:10.1175/MWR-D-15-0192.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 12501277, doi:10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and N. L. Seaman, 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33, 416434, doi:10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., N. L. Seaman, and F. S. Binkowski, 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: Effects of data assimilation within the planetary boundary layer. Mon. Wea. Rev., 119, 734754, doi:10.1175/1520-0493(1991)119<0734:UOFDDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van Baelen, J., M. Reverdy, F. Tridon, L. Labbouz, G. Dick, M. Bender, and M. Hagen, 2011: On the relationship between water vapour field evolution and the life cycle of precipitation systems. Quart. J. Roy. Meteor. Soc., 137, 204223, doi:10.1002/qj.785.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and J.-S. Sun, 2008: Effects of underlying surface physical process on a severe hail event occurred in Beijing area (in Chinese with an English abstract). Meteor. Mon., 34, 1621.

    • Search Google Scholar
    • Export Citation
  • Wang, Q.-W., and M. Xue, 2012: Convective initiation on 19 June 2002 during IHOP: High-resolution simulations and analysis of the mesoscale structures and convection initiation. J. Geophys. Res., 117, D12107, doi:10.1029/2012JD017552.

    • Search Google Scholar
    • Export Citation
  • Wang, T., Y. Wang, M. Chen, and W. Zhang, 2011: The contrastive analysis of formation of dry and moist convective storms in Beijing (in Chinese with an English abstract). Meteor. Mon., 37, 142155.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 40174030, doi:10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and R. M. Wakimoto, 1992: The initiation and organization of convective cells atop a cloud-air outflow boundary. Mon. Wea. Rev., 120, 21692187, doi:10.1175/1520-0493(1992)120<2169:TIAOOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769784, doi:10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277, doi:10.1175/BAMS-85-2-253.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., L. J. Bennett, L. J. Miller, J. Van Baelen, P. Di Girolamo, A. M. Blyth, and T. J. Hertneky, 2014: An observational and modeling study of the processes leading to deep, moist convection in complex terrain. Mon. Wea. Rev., 142, 26872708, doi:10.1175/MWR-D-13-00216.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology. Oxford University Press, 355 pp.

  • Wilhelmson, R. B., and C.-S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 14661483, doi:10.1175/1520-0469(1982)039<1466:ASOTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 25162536, doi:10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of thunderstorm initiation and evolution. Wea. Forecasting, 8, 113131, doi:10.1175/1520-0434(1993)008<0113:NOTIAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and D. L. Megenhardt, 1997: Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev., 125, 15071525, doi:10.1175/1520-0493(1997)125<1507:TIOALA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., J. A. Moore, G. B. Foote, B. Martner, T. Uttal, J. M. Wilczak, and A. R. Rodi, 1988: Convective Initiation and Downburst Experiment (CINDE). Bull. Amer. Meteor. Soc., 69, 13281348, doi:10.1175/1520-0477(1988)069<1328:CIADE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, C. K. Mueller, and S. K. Krueger, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 17851815, doi:10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., Y. Feng, M. Chen, and R. D. Roberts, 2010: Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems. Wea. Forecasting, 25, 16911714, doi:10.1175/2010WAF2222417.1.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2008: The Convective and Orographically Induced Precipitation Study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc., 89, 14771486, doi:10.1175/2008BAMS2367.1.

    • Search Google Scholar
    • Export Citation
  • Xiao, X., M. Chen, F. Gao, and Y. Wang, 2015: A thermodynamic mechanism analysis on enhancement of dissipation of convective systems from the mountains under weak synoptic forcing (in Chinese with an English abstact). Chin. J. Atmos. Sci., 39, 100124.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609, doi:10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and J. M. Fritsch, 1986: Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part I: Model description and verification. J. Atmos. Sci., 43, 19131943, doi:10.1175/1520-0469(1986)043<1913:NSOTMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and W. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary-layer parameterizations. J. Appl. Meteor., 43, 157169, doi:10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y.-X. Shou, and R. R. Dickerson, 2009: Upstream urbanization exacerbates urban heat island effects. Geophys. Res. Lett., 36, L24401, doi:10.1029/2009GL041082.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Wang, X. Cui, and T. Wang, 2011: Comparative analysis on numerical test between dry convective storm and moist convective storm in Beijing (in Chinese with an English abstract). Torrential Rain Disaster, 30, 202209.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., X. Cui, Y. Wang, Q. Li, and R. Huang, 2013: Roles of low-level easterly winds in the local torrential rains of Beijing (in Chinese with an English abstract). Chin. J. Atmos. Sci., 37, 829840.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., X. Cui, and R. Huang, 2014: Intensive observational study on evolution of formation location of convective storms in Beijing under complex topographical conditions (in Chinese with an English abstract). Chin. J. Atmos. Sci., 38, 825837.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case perspective. Wea. Forecasting, 13, 11061131, doi:10.1175/1520-0434(1998)013<1106:TIOMCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3686 3129 144
PDF Downloads 548 117 11