A Spatiotemporal Water Vapor–Deep Convection Correlation Metric Derived from the Amazon Dense GNSS Meteorological Network

David K. Adams Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico

Search for other papers by David K. Adams in
Current site
Google Scholar
PubMed
Close
,
Henrique M. J. Barbosa Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Henrique M. J. Barbosa in
Current site
Google Scholar
PubMed
Close
, and
Karen Patricia Gaitán De Los Ríos Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico

Search for other papers by Karen Patricia Gaitán De Los Ríos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Deep atmospheric convection, which covers a large range of spatial scales during its evolution, continues to be a challenge for models to replicate, particularly over land in the tropics. Specifically, the shallow-to-deep convective transition and organization on the mesoscale are often not properly represented in coarse-resolution models. High-resolution models offer insights on physical mechanisms responsible for the shallow-to-deep transition. Model verification, however, at both coarse and high resolution requires validation and, hence, observational metrics, which are lacking in the tropics. Here a straightforward metric derived from the Amazon Dense GNSS Meteorological Network (~100 km × 100 km) is presented based on a spatial correlation decay time scale during convective evolution on the mesoscale. For the shallow-to-deep transition, the correlation decay time scale is shown to be around 3.5 h. This novel result provides a much needed metric from the deep tropics for numerical models to replicate.

Corresponding author address: David K. Adams, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán 04510 D. F., Mexico City, Mexico. E-mail: dave.k.adams@gmail.com

Abstract

Deep atmospheric convection, which covers a large range of spatial scales during its evolution, continues to be a challenge for models to replicate, particularly over land in the tropics. Specifically, the shallow-to-deep convective transition and organization on the mesoscale are often not properly represented in coarse-resolution models. High-resolution models offer insights on physical mechanisms responsible for the shallow-to-deep transition. Model verification, however, at both coarse and high resolution requires validation and, hence, observational metrics, which are lacking in the tropics. Here a straightforward metric derived from the Amazon Dense GNSS Meteorological Network (~100 km × 100 km) is presented based on a spatial correlation decay time scale during convective evolution on the mesoscale. For the shallow-to-deep transition, the correlation decay time scale is shown to be around 3.5 h. This novel result provides a much needed metric from the deep tropics for numerical models to replicate.

Corresponding author address: David K. Adams, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán 04510 D. F., Mexico City, Mexico. E-mail: dave.k.adams@gmail.com
Save
  • Adams, D. K., R. M. S. Fernandes, and J. M. F. Maia, 2011a: GNSS precipitable water vapor from an Amazonian rain forest flux tower. J. Atmos. Oceanic Technol., 28, 11921198, doi:10.1175/JTECH-D-11-00082.1.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., and Coauthors, 2011b: A dense GNSS meteorological network for observing deep convection in the Amazon. Atmos. Sci. Lett., 12, 207212, doi:10.1002/asl.312.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., S. I. Gutman, K. L. Holub, and D. S. Pereira, 2013: GNSS observations of deep convective time scales in the Amazon. Geophys. Res. Lett., 40, 28182823, doi:10.1002/grl.50573.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., and Coauthors, 2015: The Amazon dense GNSS meteorological network: A new approach for examining water vapor and deep convection interactions in the tropics. Bull. Amer. Meteor. Soc., 96, 21512165, doi:10.1175/BAMS-D-13-00171.1.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J. Chaboureau, A. Beljaars, A. Betts, M. Kohler, M. Miller, and J. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, doi:10.1256/qj.03.103.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002a: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107, doi:10.1029/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002b: Study of diurnal cycle of convective precipitation over Amazonia using a single column model. J. Geophys. Res., 107, 4732, doi:10.1029/2002JD002264.

    • Search Google Scholar
    • Export Citation
  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. Anthes, and R. H. Ware, 1992: GPS meteorology: Sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res., 97, 15 78715 801, doi:10.1029/92JD01517.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fitzjarrald, D. R., R. K. Sakai, O. L. L. Moraes, R. C. de Oliveira, O. C. Acevedo, M. J. Czikowsky, and T. Beldini, 2008: Spatial and temporal rainfall variability near the Amazon-Tapajós confluence. J. Geophys. Res., 113, G00B11, doi:10.1029/2007JG000596.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., T. Mitovski, and J. R. Pierce, 2014: A simple way to improve the diurnal cycle in convective rainfall over land in climate models. J. Geophys. Res. Atmos., 119, 21132130, doi:10.1002/2013JD020149.

    • Search Google Scholar
    • Export Citation
  • Fu, R., B. Zhu, and R. E. Dickinson, 1999: How do atmosphere and land surface influence seasonal changes of convection in the tropical Amazon? J. Climate, 12, 13061321, doi:10.1175/1520-0442(1999)012<1306:HDAALS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and Coauthors, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132, 317344, doi:10.1256/qj.04.147.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, K. Landu, and C. N. Long, 2014: Advection, moistening, and shallow-to-deep convection transitions during the initiation and propagation of Madden-Julian Oscillation. J. Adv. Model. Earth Syst., 6, 938949, doi:10.1002/2014MS000335.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and B. Stevens, 2013: Preconditioning deep convection with cumulus convection. J. Atmos. Sci., 70, 448464, doi:10.1175/JAS-D-12-089.1.

    • Search Google Scholar
    • Export Citation
  • Hottovy, S., and S. N. Stechmann, 2015: A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. J. Atmos. Sci., 72, 47214738, doi:10.1175/JAS-D-15-0119.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, doi:10.1175/JAS3810.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909, doi:10.1175/JAS3723.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, V., C. Jakob, A. Protat, P. T. May, and L. Davies, 2013: The four cumulus cloud modes and their progression during rainfall events: A C-band polarimetric radar perspective. J. Geophys. Res. Atmos., 118, 83758389, doi:10.1002/jgrd.50640.

    • Search Google Scholar
    • Export Citation
  • Li, W., and R. Fu, 2004: Transition of the large-scale atmospheric and land surface conditions from the dry to the wet season over Amazonia as diagnosed by the ECMWF Re-Analysis. J. Climate, 17, 26372651, doi:10.1175/1520-0442(2004)017<2637:TOTLAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., C. E. Holloway, and J. D. Neelin, 2011: Column water vapor statistics and their relationship to deep convection, vertical and horizontal circulation, and moisture structure at Nauru. J. Climate, 24, 54545466, doi:10.1175/JCLI-D-10-05015.1.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., H. Laurent, N. Dessay, and I. Miranda, 2004: Seasonal and diurnal variability of convection over the Amazonia: A comparison of different vegetation types and large scale forcing. Theor. Appl. Climatol., 78, 6177, doi:10.1007/s00704-004-0044-9.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2015: Evolution of precipitation and convective echo top heights observed by TRMM radar over the Indian Ocean during DYNAMO. J. Geophys. Res. Atmos., 120, 39063919, doi:10.1002/2014JD022934.

    • Search Google Scholar
    • Export Citation
  • Raymond, D., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126, 889898, doi:10.1002/qj.49712656406.

  • Rieck, M., C. Hohenegger, and C. C. van Heerwaarden, 2014: The influence of land surface heterogeneities on cloud size development. Mon. Wea. Rev., 142, 38303846, doi:10.1175/MWR-D-13-00354.1.

    • Search Google Scholar
    • Export Citation
  • Rio, C., F. Hourdin, J.-Y. Grandpeix, and J.-P. Lafore, 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett., 36, L07809, doi:10.1029/2008GL036779.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., R. H. Ware, T. V. Hove, F. Solheim, C. Alber, J. Johnson, M. Bevis, and S. Businger, 1993: Sensing atmospheric water vapor with the Global Positioning System. Geophys. Res. Lett., 20, 26312634, doi:10.1029/93GL02935.

    • Search Google Scholar
    • Export Citation
  • Sahany, S., J. D. Neelin, K. Hales, and R. B. Neale, 2012: Temperature–moisture dependence of the deep convective transition as a constraint on entrainment in climate models. J. Atmos. Sci., 69, 13401358, doi:10.1175/JAS-D-11-0164.1.

    • Search Google Scholar
    • Export Citation
  • Sapucci, L. F., L. A. T. Machado, J. F. G. Monico, and A. Plana-Fattori, 2007: Intercomparison of integrated water vapor estimates from multisensors in the Amazonian region. J. Atmos. Oceanic Technol., 24, 18801894, doi:10.1175/JTECH2090.1.

    • Search Google Scholar
    • Export Citation
  • Schiro, K. A., J. D. Neelin, D. K. Adams, and B. R. Lintner, 2016: Deep convection and column water vapor over tropical land versus tropical ocean: A comparison between the Amazon and the tropical western Pacific. J. Atmos. Sci., 73, 40434063, doi:10.1175/JAS-D-16-0119.1.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2016: Modifications of the atmospheric moisture field as a result of cold-pool dynamics. Quart. J. Roy. Meteor. Soc., 142, 3042, doi:10.1002/qj.2625.

    • Search Google Scholar
    • Export Citation
  • Solheim, F., J. Vivekanandan, R. H. Ware, and C. Rocken, 1999: Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates. J. Geophys. Res., 104, 96639670, doi:10.1029/1999JD900095.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and B. Khouider, 2010: The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci., 67, 26012615, doi:10.1175/2010JAS3357.1.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., B. Stevens, and A. Arakawa, 2009: What controls the transition from shallow to deep convection? J. Atmos. Sci., 66, 17931806, doi:10.1175/2008JAS2945.1.

    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. Rutledge, 2016: Time scales of shallow-to-deep convective transition associated with the onset of Madden–Julian Oscillations. Geophys. Res. Lett., 43, 28802888, doi:10.1002/2016GL068269.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J., L. Zhang, D. Hansford, A. Radzan, N. Selover, and C. Brown, 2006: Using digital cloud photogrammetry to characterize the onset and transition from shallow to deep convection over orography. Mon. Wea. Rev., 134, 25272546, doi:10.1175/MWR3194.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci., 67, 29432959, doi:10.1175/2010JAS3366.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3602 3050 70
PDF Downloads 373 73 3