The Baroclinic Moisture Flux

Ron McTaggart-Cowan Numerical Weather Prediction Research Section, Environment and Climate Change Canada, Dorval, Quebec, Canada

Search for other papers by Ron McTaggart-Cowan in
Current site
Google Scholar
PubMed
Close
,
John R. Gyakum Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by John R. Gyakum in
Current site
Google Scholar
PubMed
Close
, and
Richard W. Moore Norwegian Meteorological Institute, and Department of Meteorology and Oceanography, University of Oslo, Oslo, Norway

Search for other papers by Richard W. Moore in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As subsaturated air ascends sloping isentropic surfaces, adiabatic expansion results in cooling and relative moistening. This process is an effective way to precondition the atmosphere for efficient moist processes while bringing parcels to saturation, and thereafter acts to maintain saturation during condensation. The goal of this study is to develop a diagnostic quantity that highlights circulations and regions in which the process of parcel moistening by isentropic ascent is active. Among the many features that rely on this process for the generation of an important fraction of their energy are oceanic cyclones, transitioning tropical cyclones, warm conveyor belts, diabatic Rossby vortices, and predecessor rain events. The baroclinic moisture flux (BMF) is defined as moisture transport by the component of vertical motion associated with isentropic upgliding. In warm conveyor belt and diabatic Rossby vortex case studies, the BMF appears to be successful in identifying the portion of the circulation in which this process is actively bringing parcels to saturation to promote the formation of clouds and precipitation. On a broader scale, the climatological maxima of the BMF highlight regions in which parcel moistening by isentropic ascent is anticipated to have a nonnegligible impact on the atmospheric state either through the action of the mean flow or via the repeated occurrence of isolated large-BMF events. The process-centric foundation of the BMF makes it useful as a filtering or exploratory variable, with the potential for extension into predictive applications.

Denotes Open Access content.

Corresponding author address: Ron McTaggart-Cowan, Numerical Weather Prediction Research Section, Environment and Climate Change Canada, 2121 Trans-Canada Highway, Floor 5, Dorval, QC H9P 1J3, Canada. E-mail: ron.mctaggart-cowan@canada.ca

Abstract

As subsaturated air ascends sloping isentropic surfaces, adiabatic expansion results in cooling and relative moistening. This process is an effective way to precondition the atmosphere for efficient moist processes while bringing parcels to saturation, and thereafter acts to maintain saturation during condensation. The goal of this study is to develop a diagnostic quantity that highlights circulations and regions in which the process of parcel moistening by isentropic ascent is active. Among the many features that rely on this process for the generation of an important fraction of their energy are oceanic cyclones, transitioning tropical cyclones, warm conveyor belts, diabatic Rossby vortices, and predecessor rain events. The baroclinic moisture flux (BMF) is defined as moisture transport by the component of vertical motion associated with isentropic upgliding. In warm conveyor belt and diabatic Rossby vortex case studies, the BMF appears to be successful in identifying the portion of the circulation in which this process is actively bringing parcels to saturation to promote the formation of clouds and precipitation. On a broader scale, the climatological maxima of the BMF highlight regions in which parcel moistening by isentropic ascent is anticipated to have a nonnegligible impact on the atmospheric state either through the action of the mean flow or via the repeated occurrence of isolated large-BMF events. The process-centric foundation of the BMF makes it useful as a filtering or exploratory variable, with the potential for extension into predictive applications.

Denotes Open Access content.

Corresponding author address: Ron McTaggart-Cowan, Numerical Weather Prediction Research Section, Environment and Climate Change Canada, 2121 Trans-Canada Highway, Floor 5, Dorval, QC H9P 1J3, Canada. E-mail: ron.mctaggart-cowan@canada.ca
Save
  • Archambault, H. M., L. F. Bosart, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, doi:10.1175/MWR-D-12-00257.1.

    • Search Google Scholar
    • Export Citation
  • Benton, G. S., and M. A. Estoque, 1954: Water-vapor transfer over the North American continent. J. Meteor., 11, 462–477, doi:10.1175/1520-0469(1954)011<0462:WVTOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berry, G., M. J. Reeder, and C. Jakob, 2011: Physical mechanisms regulating summertime rainfall over northwestern Australia. J. Climate, 24, 37053717, doi:10.1175/2011JCLI3943.1.

    • Search Google Scholar
    • Export Citation
  • Boettcher, M., and H. Wernli, 2011: Life cycle study of a diabatic Rossby wave as a precursor to rapid cyclogenesis in the North Atlantic—Dynamics and forecast performance. Mon. Wea. Rev., 139, 18611878, doi:10.1175/2011MWR3504.1.

    • Search Google Scholar
    • Export Citation
  • Boettcher, M., and H. Wernli, 2013: A 10-yr climatology of diabatic Rossby waves in the Northern Hemisphere. Mon. Wea. Rev., 141, 11391154, doi:10.1175/MWR-D-12-00012.1.

    • Search Google Scholar
    • Export Citation
  • Boettcher, M., and H. Wernli, 2015: Diabatic Rossby waves in the Southern Hemisphere. Quart. J. Roy. Meteor. Soc., 141, 31063117, doi:10.1002/qj.2595.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and K. A. Emanuel, 2009: Annual intensification of the Somali jet in a quasi-equilibrium framework: Observational composites. Quart. J. Roy. Meteor. Soc., 135, 319335, doi:10.1002/qj.388.

    • Search Google Scholar
    • Export Citation
  • Bosart, J. L., 1981: The President’s Day snowstorm of 18–19 February 1979: A subsynoptic-scale event. Mon. Wea. Rev., 109, 15421566, doi:10.1175/1520-0493(1981)109<1542:TPDSOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1985: Conceptual models of precipitation systems. Meteor. Mag., 114, 293319.

  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: The Erik H. Palmén Memorial Volume, C. Newton and E. Holopainen, Eds., Amer. Meteor. Soc., 129–153.

  • Browning, K. A., and N. M. Roberts, 1994: Structure of a frontal cyclone. Quart. J. Roy. Meteor. Soc., 120, 15351557, doi:10.1002/qj.49712052006.

    • Search Google Scholar
    • Export Citation
  • Businger, S., T. M. Graziano, M. L. Kaplan, and R. A. Rozumalski, 2005: Cold-air cyclogenesis along the Gulf-Stream front: Investigation of diabatic impacts on cyclone development, frontal structure, and track. Meteor. Atmos. Phys., 88, 6590, doi:10.1007/s00703-003-0050-y.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, doi:10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carroll, E. B., 2003: Thermal advection, vorticity advection and potential vorticity advection in extra-tropical synoptic-scale development. Meteor. Appl., 10, 281292, doi:10.1017/S1350482703003086.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West African precipitation. J. Climate, 12, 11651184, doi:10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747, doi:10.1175/1520-0493(2003)131<2730:BITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Vries, A. J., S. B. Feldstein, E. Tyrlis, M. Riemer, M. Baumgart, M. Fnais, M. Sprenger, and J. Lelieveld, 2016: Dynamics of tropical-extratropical interactions and extreme precipitation events in Saudi Arabia in autumn, winter and spring. Quart. J. Roy. Meteor. Soc., 142, 18621880, doi:10.1002/qj.2781.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17, 218237, doi:10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: Observational evidence of slantwise convective adjustment. Mon. Wea. Rev., 116, 18051816, doi:10.1175/1520-0493(1988)116<1805:OEOSCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Genesis and maintenance of “Mediterranean hurricanes.” Adv. Geosci., 2, 217220, doi:10.5194/adgeo-2-217-2005.

    • Search Google Scholar
    • Export Citation
  • Evans, C., and R. E. Hart, 2008: Analysis of the wind field evolution associated with the extratropical transition of Bonnie (1998). Mon. Wea. Rev., 136, 20472065, doi:10.1175/2007MWR2051.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2007: A gray-radiation aquaplanet moist GCM. Part II: Energy transports in altered climates. J. Atmos. Sci., 64, 16801693, doi:10.1175/JAS3913.1.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 32723297, doi:10.1175/2010MWR3243.1.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, doi:10.1002/qj.891.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., F. H. Ludlam, and J. F. R. McIlveen, 1966: Isentropic relative-flow analysis and the parcel theory. Quart. J. Roy. Meteor. Soc., 92, 210219, doi:10.1002/qj.49709239204.

    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and C.-H. Wang, 1989: On the source of air modified by ocean surface fluxes to enhance frontal cyclone development. Ocean–Air Interact., 1, 257288.

    • Search Google Scholar
    • Export Citation
  • Hanstrum, B. N., K. J. Wilson, and S. L. Barrell, 1990: Prefrontal troughs over southern Australia. Part I: A climatology. Wea. Forecasting, 5, 2231, doi:10.1175/1520-0434(1990)005<0022:PTOSAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. L. Panetta, and R. T. Pierrehumbert, 1985: Stationary external Rossby waves in vertical shear. J. Atmos. Sci., 42, 865883, doi:10.1175/1520-0469(1985)042<0865:SERWIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hennon, C. C., and Coauthors, 2013: Tropical cloud cluster climatology, variability, and genesis productivity. J. Climate, 26, 30463066, doi:10.1175/JCLI-D-12-00387.1.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, doi:10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hirata, H., R. Kawamura, M. Kato, and T. Shinoda, 2015: Influential role of moisture supply from the Kuroshio/Kuroshio Extension in the rapid development of an extratropical cyclone. Mon. Wea. Rev., 143, 41264144, doi:10.1175/MWR-D-15-0016.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., M. Pedder, and D. Wyn Jones, 2003: The omega equation and potential vorticity. Quart. J. Roy. Meteor. Soc., 129, 32773303, doi:10.1256/qj.02.135.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. M. Goss, and M. E. Baldwin, 2000: The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting, 15, 700714, doi:10.1175/1520-0434(2000)015<0700:TMEAAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373395, doi:10.1175/1520-0434(2000)015<0373:ETOWNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemisphere extratropics. J. Climate, 23, 9871003, doi:10.1175/2009JCLI3333.1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., H. Wernli, and G. Gläser, 2013: A global climatology of tropical moisture exports. J. Climate, 26, 30313045, doi:10.1175/JCLI-D-12-00401.1.

    • Search Google Scholar
    • Export Citation
  • Kodama, Y., 1992: Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ). Part I: Characteristics of subtropical frontal zones. J. Meteor. Soc. Japan, 70, 813835.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and I. P. Maxin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974, doi:10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., M. A. Shapiro, and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119, 368384, doi:10.1175/1520-0493(1991)119<0368:TIBBAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., and Y. Asuma, 2008: Numerical study of explosively developing extratropical cyclones in the Northwestern Pacific region. Mon. Wea. Rev., 136, 712740, doi:10.1175/2007MWR2111.1.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., D. Keyser, and L. F. Bosart, 1999: Energetics of an intensifying jet streak during the experiment on rapidly intensifying cyclones over the Atlantic (ERICA). Mon. Wea. Rev., 127, 27772795, doi:10.1175/1520-0493(1999)127<2777:EOAIJS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., R. Wood, P. R. Field, J.-C. Golaz, T. H. Vonder Harr, and W. R. Cotton, 2001: Small-scale and mesoscale variability of scalars in cloudy boundary layers: One-dimensional probability density functions. J. Atmos. Sci., 58, 19781994, doi:10.1175/1520-0469(2001)058<1978:SSAMVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783.

  • Lélé, M. I., and P. J. Lamb, 2010: Variability of the intertropical front (ITF) and rainfall over the West African Sudan–Sahel zone. J. Climate, 23, 39844004, doi:10.1175/2010JCLI3277.1.

    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, and H. Joos, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, doi:10.1175/JCLI-D-12-00720.1.

    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and J. L. McBride, 1992: Recent research on the Australian monsoon. J. Meteor. Soc. Japan, 70, 275285.

  • McBride, J., 1998: Indonesia, Papua New Guinea, and tropical Australia: The Southern Hemisphere monsoon. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 49, Amer. Meteor. Soc., 89–99.

  • Moore, R. W., M. T. Montgomery, and H. Davies, 2013: Genesis criteria for diabatic Rossby vortices: A model study. Mon. Wea. Rev., 141, 252263, doi:10.1175/MWR-D-12-00080.1.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1939: The use of isentropic analysis in short term forecasting. J. Aeronaut. Sci., 6, 295298, doi:10.2514/8.860.

  • Nieto, R., L. Gimeno, and R. M. Trigo, 2006: A Lagrangian identification of major sources of Sahel moisture. Geophys. Res. Lett., 33, L18707, doi:10.1029/2006GL027232.

  • O’Gorman, P. A., 2011: The effective static stability experienced by eddies in a moist atmosphere. J. Atmos. Sci., 68, 7590, doi:10.1175/2010JAS3537.1.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y., and S.-P. Xie, 2004: Interaction of the Atlantic equatorial cold tongue and the African monsoon. J. Climate, 17, 35893602, doi:10.1175/1520-0442(2004)017<3589:IOTAEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., and T. Spengler, 2015: Analysis of the slope of isentropic surfaces and its tendencies over the North Atlantic. Quart. J. Roy. Meteor. Soc., 141, 32263238, doi:10.1002/qj.2605.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and Coauthors, 2005: The diurnal cycle of the West African monsoon circulation. Quart. J. Roy. Meteor. Soc., 131, 28392860, doi:10.1256/qj.04.52.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and A. J. Thorpe, 1995: Conditional convective heating in a baroclinic atmosphere: A model of convective frontogenesis. J. Atmos. Sci., 52, 16991711, doi:10.1175/1520-0469(1995)052<1699:CCHIAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., A. Czaja, and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 10751078, doi:10.1126/science.1159649.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. AIP Press, 520 pp.

  • Petterssen, S., and S. Smebye, 1971: On the development of extratropical storms. Quart. J. Roy. Meteor. Soc., 97, 457482, doi:10.1002/qj.49709741407.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 2740, doi:10.1175/JCLI-D-13-00223.1.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. O’Gorman, and M. Singh, 2015: Extratropical cyclones in idealized simulations of changed climates. J. Climate, 28, 9373–9392, doi:10.1175/JCLI-D-14-00816.1.

    • Search Google Scholar
    • Export Citation
  • Plant, R. S., G. C. Craig, and S. L. Gray, 2003: On a threefold classification of extratropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 129, 29893012, doi:10.1256/qj.02.174.

    • Search Google Scholar
    • Export Citation
  • Quaas, J., 2012: Evaluating the “critical relative humidity” as a measure of subgrid-scale variability of humidity in general circulation model cloud cover parameterizations using satellite data. J. Geophys. Res., 117, D09208, doi:10.1029/2012JD017495.

  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. N. Kiladis, and K. Weickmann, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropicalextratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, doi:10.1175/2010MWR3596.1.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1967: Atmospheric water vapor transport and the water balance of North America: Part I. Characteristics of the water vapor flux field. Mon. Wea. Rev., 95, 403426, doi:10.1175/1520-0493(1967)095<0403:AWVTAT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E., 1979: The polar low as an extratropical CISK disturbance. Quart. J. Roy. Meteor. Soc., 105, 531549, doi:10.1002/qj.49710544504.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112, 15771589, doi:10.1175/1520-0493(1984)112<1577:SAAUCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sadler, J. C., 1975: The upper tropospheric circulation over the global tropics. Tech. Rep. UHMET-75-05, Department of Meteorology, University of Hawaii, Honolulu, HI, 35 pp.

  • Salih, A. A. M., Q. Zhang, and M. Tjerström, 2015: Lagrangian tracing of Sahelian Sudan moisture sources. J. Geophys. Res.Atmos., 120, 67936808, doi:10.1002/2015JD023238.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, doi:10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2001: Reexamining the cold conveyor belt. Mon. Wea. Rev., 129, 22052225, doi:10.1175/1520-0493(2001)129<2205:RTCCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and D. Keyser, 1990: Fronts, jet streams and the tropopause. Extratropical Cyclones, C. Newton and E. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

  • Simmonds, I., R. J. Murray, and R. M. Leighton, 1999: A refinement of cyclone tracking methods with data from FROST. Aust. Meteor. Mag., 48, 35–49.

  • Sodemann, H., and A. Stohl, 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 28502868, doi:10.1175/MWR-D-12-00256.1.

    • Search Google Scholar
    • Export Citation
  • Spengler, T., M. J. Reeder, and R. K. Smith, 2005: The dynamics of heat lows in simple background flows. Quart. J. Roy. Meteor. Soc., 131, 31473165, doi:10.1256/qj.04.177.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, and H. Sodemann, 2008: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N—A tale of hurricanes and an atmospheric river. J. Geophys. Res., 113, D05102, doi:10.1029/2007JD009006.

  • Sultan, B., and S. Janicot, 2003: The West African monoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon. J. Climate, 16, 34073427, doi:10.1175/1520-0442(2003)016<3407:TWAMDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., H. Nguyen, C. Zhang, and P. Peyrillé, 2011: Annual cycle of the west African monsoon: Regional circulations and associated water vapour transport. Quart. J. Roy. Meteor. Soc., 137, 129147, doi:10.1002/qj.728.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 24372461, doi:10.1175/JAS3768.1.

    • Search Google Scholar
    • Export Citation
  • Troup, A. J., 1961: Variations in upper tropospheric flow associated with the onset of the Australian summer monsoon. Indian J. Meteor. Geophys., 12, 217230.

    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: The South American low-level jet experiment. Bull. Amer. Meteor. Soc., 87, 6377, doi:10.1175/BAMS-87-1-63.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., 1996: Formation and limiting mechanisms for very high sea surface tmperature: Linking the dynamics and thermodynamics. J. Climate, 9, 161188, doi:10.1175/1520-0442(1996)009<0161:FALMFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study. Quart. J. Roy. Meteor. Soc., 123, 16771706, doi:10.1002/qj.49712354211.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm ‘lothar.’ Quart. J. Roy. Meteor. Soc., 128, 405429, doi:10.1256/003590002321042036.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and J. L. McBride, 2005: Australian-Indonesian monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Praxis, 125–173.

  • Yamamoto, M., 2013: Effects of a semienclosed ocean on extratropical cyclogenesis: The dynamical processes around the Japan Sea on 23–25 January 2008. J. Geophys. Res. Atmos., 118, 10 39110 404, doi:10.1002/jgrd.50802.

    • Search Google Scholar
    • Export Citation
  • Yoshida, A., and Y. Asuma, 2004: Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region. Mon. Wea. Rev., 132, 11211142, doi:10.1175/1520-0493(2004)132<1121:SAEOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1372 1013 89
PDF Downloads 359 57 6