• Anagnostou, E. N., and W. F. Krajewski, 1999: Real-time radar rainfall estimation. Part 1: Algorithm formulation. J. Atmos. Oceanic Technol., 16, 189197, doi:10.1175/1520-0426(1999)016<0189:RTRREP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andrić, J., M. R. Kumjian, D. Zrnić, J. M. Straka, and V. M. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, doi:10.1175/JAMC-D-12-028.1.

    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, doi:10.1175/2009JAS2883.1.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Beatty, K., E. N. Rasmussen, and J. M. Straka, 2008: The supercell spectrum. Part I: A review of research related to supercell precipitation morphology. Electron. J. Severe Storms Meteor., 3 (4). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewarticle/44/45.]

    • Search Google Scholar
    • Export Citation
  • Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, doi:10.1175/JAMC-D-12-055.1

    • Search Google Scholar
    • Export Citation
  • Bellon, A., F. Fabry, and G. L. Austin, 1991: Errors due to space–time sampling strategies in high-resolution radar data in hydrology. Preprints, 25th Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 2040–2048.

  • Benjamin, S. G., and T. N. Carlson, 1986: Some effects of surface heating and topography on the regional severe storm environment. Part I: Three-dimensional simulations. Mon. Wea. Rev., 114, 307329, doi:10.1175/1520-0493(1986)114<0307:SEOSHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and C. R. Parks, 1983: A synoptic and photographic climatology of low precipitation severe thunderstorms in the southern plains. Mon. Wea. Rev., 111, 20342046, doi:10.1175/1520-0493(1983)111<2034:ASAPCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, and J. Verlinde, 2013: Variability in millimeter wave scattering properties of dendritic ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 131, 105114, doi:10.1016/j.jqsrt.2013.05.009.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Bühl, J., P. Seifert, A. Myagkov, and A. Ansmann, 2016: Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station. Atmos. Chem. Phys., 16, 10 60910 620, doi:10.5194/acp-16-10609-2016.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., R. Keränen, S. Lim, and D. Moisseev, 2013: Recent advances in classification of observations from dual polarization weather radars. Atmos. Res., 119, 97111, doi:10.1016/j.atmosres.2011.08.014.

    • Search Google Scholar
    • Export Citation
  • Clarke, R. H., 1962: Pressure oscillations and fallout downdraughts. Quart. J. Roy. Meteor. Soc., 88, 459469, doi:10.1002/qj.49708837808.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., and R. A. A. Franks, 1991: The evaporation of frontal and other stratiform precipitation. Quart. J. Roy. Meteor. Soc., 117, 10571080, doi:10.1002/qj.49711750109.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.

    • Search Google Scholar
    • Export Citation
  • Diederich, M., A. Ryzhkov, C. Simmer, P. Zhang, and S. Trömel, 2015: Use of specific attenuation for rainfall measurement at X-band radar wavelengths. Part I: Radar calibration and partial beam blockage estimation. J. Hydrometeor., 16, 487502, doi:10.1175/JHM-D-14-0066.1.

    • Search Google Scholar
    • Export Citation
  • Doms, G., and U. Schättler, 2002: A description of the nonhydrostatic regional model LM. Part I: Dynamics and numerics. COSMO Newsl., 2, 225235.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., and A. C. A. P. van Lammeren, 2001: Cloud effective particle size and water content profile retrievals using combined lidar and radar observations: 1. Theory and examples. J. Geophys. Res., 106, 27 42527 448, doi:10.1029/2001JD900243.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 2006: Doppler Radar and Weather Observations. Dover, 562 pp.

  • Fang, M., B. A. Albrecht, V. P. Ghate, and P. Kollias, 2014: Turbulence in continental stratocumulus. Part II: Eddy dissipation rates and large-eddy coherent structures. Bound.-Layer Meteor., 150, 361380, doi:10.1007/s10546-013-9872-4.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., C. T. Schmidt, S. Kihlgren, and C. Cornet, 2010: Mammatus clouds as a response to cloud-base radiative heating. J. Atmos. Sci., 67, 38913903, doi:10.1175/2010JAS3513.1.

    • Search Google Scholar
    • Export Citation
  • Glickman, T., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp. [Available online at http://glossary.ametsoc.org/.]

  • Görsdorf, U., V. Lehmann, M. Bauer-Pfundstein, G. Peters, D. Vavriv, V. Vinogradov, and V. Volkov, 2015: A 35-GHz polarimetric Doppler radar for long-term observations of cloud parameters—Description of system and data processing. J. Atmos. Oceanic Technol., 32, 675690, doi:10.1175/JTECH-D-14-00066.1.

    • Search Google Scholar
    • Export Citation
  • Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey, 2010: Ceilometer lidar comparison: Backscatter coefficient retrieval and signal-to-noise ratio determination. Atmos. Meas. Tech., 3, 17631770, doi:10.5194/amt-3-1763-2010.

    • Search Google Scholar
    • Export Citation
  • Hlad, C. J., Jr., 1944: Stability-tendency and mammatocumulus clouds. Bull. Amer. Meteor. Soc., 25, 327331.

  • Hobbs, P. V., and A. L. Rangno, 1985: Ice particle concentrations in clouds. J. Atmos. Sci., 42, 25232549, doi:10.1175/1520-0469(1985)042<2523:IPCIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., P. N. Francis, H. Flentje, A. J. Illingworth, M. Quante, and J. Pelon, 2003: Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE’98. Quart. J. Roy. Meteor. Soc., 129, 20892116, doi:10.1256/rj.01.208.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. D. Behera, E. J. O’Connor, and A. J. Illingworth, 2004: Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar. Geophys. Res. Lett., 31, L05106, doi:10.1029/2003GL018977.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and M. R. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, doi:10.1175/JAS-D-13-0388.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2014: Cloud Dynamics. 2nd ed. Academic Press, 496 pp.

  • Hubbert, J., and V. Bringi, 2000: The effects of three-body scattering on differential reflectivity signatures. J. Atmos. Oceanic Technol., 17, 5161, doi:10.1175/1520-0426(2000)017<0051:TEOTBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489, doi:10.1002/qj.49711347604.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, doi:10.1175/2010JAMC2558.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., B. A. Albrecht, R. Lhermitte, and A. Savtchenko, 2001: Radar observations of updrafts, downdrafts, and turbulence in fair weather cumuli. J. Atmos. Sci., 58, 17501766, doi:10.1175/1520-0469(2001)058<1750:ROOUDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., I. Jo, and B. A. Albrecht, 2005: High-resolution observations of mammatus in tropical anvils. Mon. Wea. Rev., 133, 21052112, doi:10.1175/MWR2918.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part 1: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226242, doi:10.15191/nwajom.2013.0119.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and Vaughan T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, doi:10.1175/JAMC-D-13-0354.1.

    • Search Google Scholar
    • Export Citation
  • Lewis, M. W., and S. L. Gray, 2010: Categorisation of synoptic environments associated with mesoscale convective systems over the UK. Atmos. Res., 97, 194213, doi:10.1016/j.atmosres.2010.04.001.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., and Coauthors, 2015: JOYCE: Jülich Observatory for Cloud Evolution. Bull. Amer. Meteor. Soc., 96, 11571174, doi:10.1175/BAMS-D-14-00105.1.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., J. M. Sabburg, J. Calbó, and D. Pagès, 2006: Retrieving cloud characteristics from ground-based daytime color all-sky images. J. Atmos. Oceanic Technol., 23, 633652, doi:10.1175/JTECH1875.1.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., E. E. Clothiaux, K. Aydin, and J. Verlinde, 2014: Estimating ice particle scattering properties using a modified Rayleigh–Gans approximation. J. Geophys. Res. Atmos., 119, 10 47110 484, doi:10.1002/2014JD021850.

    • Search Google Scholar
    • Export Citation
  • Martner, B. E., 1995: Doppler radar observations of mammatus. Mon. Wea. Rev., 123, 31153121, doi:10.1175/1520-0493(1995)123<3115:DROOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martner, B. E., 1996: An intimate look at clouds. Weatherwise, 49, 2023, doi:10.1080/00431672.1996.9925404.

  • Moisseev, D. N., S. Lautaportti, J. Tyynela, and S. Lim, 2015: Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. J. Geophys. Res. Atmos., 120, 12 64412 655, doi:10.1002/2015JD023884.

    • Search Google Scholar
    • Export Citation
  • Moller, A. R., C. A. Doswell III, and R. W. Przybylinski, 1990: High-precipitation supercells: A conceptual model and documentation. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, Alberta, Canada, Amer. Meteor. Soc., 5257.

  • Moller, A. R., M. P. Foster, and G. R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327347, doi:10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., J. Pyle, and F. Zhang, 2014: Encyclopedia of Atmospheric Sciences. 2nd ed. Academic Press, 2998 pp.

  • Oue, M., M. R. Kumjian, Y. Lu, Z. Jiang, E. E. Clothiaux, J. Verlinde, and K. Aydin, 2015: X-band polarimetric and Ka-band Doppler spectral radar observations of a graupel-producing Arctic mixed-phase cloud. J. Appl. Meteor. Climatol., 54, 13351351, doi:10.1175/JAMC-D-14-0315.1.

    • Search Google Scholar
    • Export Citation
  • Oue, M., M. Galletti, J. Verlinde, A. Ryzhkov, and Y. Lu, 2016: Use of X-band differential reflectivity measurements to study shallow arctic mixed-phase clouds. J. Appl. Meteor. Climatol., 55, 403424, doi:10.1175/JAMC-D-15-0168.1.

    • Search Google Scholar
    • Export Citation
  • Pearson, G., F. Davies, and C. Collier, 2009: An analysis of the performance of the UFAM pulsed Doppler Lidar for observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240250, doi:10.1175/2008JTECHA1128.1.

    • Search Google Scholar
    • Export Citation
  • Picca, J. C., and A. V. Ryzhkov, 2010: ZDR columns as a predictive tool for hail growth and storm evolution. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 11.3. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_175750.htm.]

  • Picca, J., and A. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, doi:10.1175/MWR-D-11-00112.1.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., R. T. Austin, S. A. Young, and A. J. Heymsfield, 2002: LIRAD observations of tropical cirrus clouds in MCTEX. Part II: Optical properties and base cooling in dissipating storm anvil clouds. J. Atmos. Sci., 59, 31633177, doi:10.1175/1520-0469(2002)059<3163:LOOTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1996: Microphysics of Clouds and Precipitation. 2nd ed. Springer, 954 pp.

  • Rauber, R. M., and L. O. Grant, 1986: The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms. Part II: Spatial distribution and microphysical characteristics. J. Climate Appl. Meteor., 25, 489504, doi:10.1175/1520-0450(1986)025<0489:TCADOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and A. Tokay, 1991: An explanation for the existence of supercooled water at the top of cold clouds. J. Atmos. Sci., 48, 10051023, doi:10.1175/1520-0469(1991)048<1005:AEFTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., D. Zrnić, and B. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134, doi:10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., P. Zhang, H. Reeves, M. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, doi:10.1175/JTECH-D-15-0020.1.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 2005: Polarization in lidar. Lidar: Range-Resolved Optical Remote-Sensing of the Atmosphere, K. Weitkamp, Ed., Springer Series in Optical Sciences, Vol. 109, Springer, 19–42.

  • Schaefer, J. T., 1986: Severe thunderstorm forecasting: A historical perspective. Wea. Forecasting, 1, 164189, doi:10.1175/1520-0434(1986)001<0164:STFAHP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., M. R. Kumjian, and Y. Lu, 2015: Polarimetric radar signatures of dendritic growth zones within Colorado winter storms. J. Appl. Meteor. Climatol., 54, 23652388, doi:10.1175/JAMC-D-15-0004.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Y. Hancock, 2016: Contrail lobes or mamma? The importance of correct terminology. Weather, 71, 203209, doi:10.1002/wea.2765.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Coauthors, 2006: The mysteries of mammatus clouds: Observations and formation mechanisms. J. Atmos. Sci., 63, 24092435, doi:10.1175/JAS3758.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, P., and Coauthors, 2010: Saharan dust and heterogeneous ice formation: Eleven years of cloud observations at a central European EARLINET site. J. Geophys. Res., 115, D20201, doi:10.1029/2009JD013222.

    • Search Google Scholar
    • Export Citation
  • Shupe, M., 2007: A ground-based multiple remote-sensor cloud phase classifier. Geophys. Res. Lett., 34, L22809, doi:10.1029/2007GL031008.

    • Search Google Scholar
    • Export Citation
  • Simmer, C., and Coauthors, 2015: Monitoring and modeling the terrestrial system from pores to catchments: The Transregional Collaborative Research Center on patterns in the soil–vegetation–atmosphere system. Bull. Amer. Meteor. Soc., 96, 17651787, doi:10.1175/BAMS-D-13-00134.1.

    • Search Google Scholar
    • Export Citation
  • Simmer, C., and Coauthors, 2016: HErZ: The German Hans-Ertel Centre for Weather Research. Bull. Amer. Meteor. Soc., 97, 10571068, doi:10.1175/BAMS-D-13-00227.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. Ryzhkov, M. Kumjian, J. Picca, and A. Khain, 2015: Developing a ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 18191844, doi:10.1175/WAF-D-15-0068.1.

    • Search Google Scholar
    • Export Citation
  • Stith, J. L., 1995: In situ measurements and observations of cumulonimbus mamma. Mon. Wea. Rev., 123, 907914, doi:10.1175/1520-0493(1995)123<0907:ISMAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vali, G., P. J. DeMott, O. Möhler, and T. F. Whale, 2015: Technical note: A proposal for ice nucleation terminology. Atmos. Chem. Phys., 15, 10 26310 270, doi:10.5194/acp-15-10263-2015.

    • Search Google Scholar
    • Export Citation
  • van Delden, A., 1998: The synoptic setting of a thundery low and associated prefrontal squall line in western Europe. Meteor. Atmos. Phys., 65, 113131, doi:10.1007/BF01030272.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., V. Bringi, M. Hagen, and P. Meischner, 1994: Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens., 32, 110, doi:10.1109/36.285183.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and K. Sassen, 2006: Cirrus mammatus properties derived from an extended remote sensing dataset. J. Atmos. Sci., 63, 712725, doi:10.1175/JAS3648.1.

    • Search Google Scholar
    • Export Citation
  • Warner, C., 1973: Measurements of mamma. Weather, 28, 394397, doi:10.1002/j.1477-8696.1973.tb00843.x.

  • Weissmann, M., and Coauthors, 2014: Initial phase of the Hans-Ertel Centre for Weather Research—A virtual centre at the interface of basic and applied weather and climate research. Meteor. Z., 23, 193208, doi:10.1127/0941-2948/2014/0558.

    • Search Google Scholar
    • Export Citation
  • Weitkamp, C., 2005: Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere. Springer Series in Optical Sciences, Vol. 102, Springer, 460 pp.

  • Westbrook, C. D., A. J. Illingworth, E. J. O’Connor, and R. J. Hogan, 2010: Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds. Quart. J. Roy. Meteor. Soc., 136, 260276, doi:10.1002/qj.528.

    • Search Google Scholar
    • Export Citation
  • Winstead, N. S., J. Verlinde, S. T. Arthur, F. Jaskiewicz, M. Jensen, N. Miles, and D. Nicosia, 2001: High-resolution airborne radar observations of mammatus. Mon. Wea. Rev., 129, 159166, doi:10.1175/1520-0493(2001)129<0159:HRAROO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1975: International Cloud Atlas, Volume I: Manual on the Observation of Clouds and Other Meteors. World Meteorological Organization Rep. WMO-407, 155 pp. [Available online at library.wmo.int/opac/index.php?lvl=notice_display&id=5357.]

  • World Meteorological Organization, 1987: International Cloud Atlas, Volume II. World Meteorological Organization Rep. WMO-407, 212 pp. [Available online at library.wmo.int/opac/index.php?lvl=notice_display&id=5358.]

  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, doi:10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 7 7 7

Multisensor Characterization of Mammatus

View More View Less
  • 1 Meteorological Institute, University of Bonn, Bonn, Germany
  • | 2 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
Restricted access

Abstract

Multisensor observations of anvil mammatus are analyzed in order to gain a more detailed understanding of their spatiotemporal structure and microphysical characterization. Remarkable polarimetric radar signatures are detected for the Pentecost 2014 supercell in Northrhine Westfalia, Germany, and severe storms in Oklahoma along their mammatus-bearing anvil bases. Radar reflectivity at horizontal polarization ZH and cross-correlation coefficient ρHV decrease downward toward the bottom of the anvil while differential reflectivity ZDR rapidly increases, consistent with the signature of crystal depositional growth. The differential reflectivity ZDR within mammatus exceeds 2 dB in the Pentecost storm and in several Oklahoma severe convective storms examined for this paper. Observations from a zenith-pointing Ka-band cloud radar and a Doppler wind lidar during the Pentecost storm indicate the presence of a supercooled liquid layer of at least 200–300-m depth near the anvil base at temperatures between −15° and −30°C. These liquid drops, which are presumably generated in localized areas of vertical velocities of up to 1.5 m s−1, coexist with ice particles identified by cloud radar. The authors hypothesize that pristine crystals grow rapidly within these layers of supercooled water, and that oriented planar ice crystals falling from the liquid layers lead to high ZDR at precipitation radar frequencies. A mammatus detection strategy using precipitation radar observations is presented, based on a methodology so far mainly used for the detection of updrafts in convective storms. Owing to the presence of a supercooled liquid layer detected above the mammatus lobes, the new detection strategy might also be relevant for aviation safety.

Denotes Open Access content.

Corresponding author address: Dr. Silke Trömel, Auf dem Hügel 20, 53121 Bonn, Germany. E-mail: silke.troemel@uni-bonn.de

Abstract

Multisensor observations of anvil mammatus are analyzed in order to gain a more detailed understanding of their spatiotemporal structure and microphysical characterization. Remarkable polarimetric radar signatures are detected for the Pentecost 2014 supercell in Northrhine Westfalia, Germany, and severe storms in Oklahoma along their mammatus-bearing anvil bases. Radar reflectivity at horizontal polarization ZH and cross-correlation coefficient ρHV decrease downward toward the bottom of the anvil while differential reflectivity ZDR rapidly increases, consistent with the signature of crystal depositional growth. The differential reflectivity ZDR within mammatus exceeds 2 dB in the Pentecost storm and in several Oklahoma severe convective storms examined for this paper. Observations from a zenith-pointing Ka-band cloud radar and a Doppler wind lidar during the Pentecost storm indicate the presence of a supercooled liquid layer of at least 200–300-m depth near the anvil base at temperatures between −15° and −30°C. These liquid drops, which are presumably generated in localized areas of vertical velocities of up to 1.5 m s−1, coexist with ice particles identified by cloud radar. The authors hypothesize that pristine crystals grow rapidly within these layers of supercooled water, and that oriented planar ice crystals falling from the liquid layers lead to high ZDR at precipitation radar frequencies. A mammatus detection strategy using precipitation radar observations is presented, based on a methodology so far mainly used for the detection of updrafts in convective storms. Owing to the presence of a supercooled liquid layer detected above the mammatus lobes, the new detection strategy might also be relevant for aviation safety.

Denotes Open Access content.

Corresponding author address: Dr. Silke Trömel, Auf dem Hügel 20, 53121 Bonn, Germany. E-mail: silke.troemel@uni-bonn.de
Save