• Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069, doi:10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beck, J. R., and C. Weiss, 2013: An assessment of low-level baroclinity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649669, doi:10.1175/MWR-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Beck, J. R., J. L. Schroeder, and J. M. Wurman, 2006: High-resolution dual-Doppler analyses of the 29 May 2001 Kress, Texas, cyclic supercell. Mon. Wea. Rev., 134, 31253148, doi:10.1175/MWR3246.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and S. G. Gaddy, 2001: Airborne pseudo-dual-Doppler analysis of a rear-inflow jet and deep convergence zone within a supercell. Mon. Wea. Rev., 129, 22702289, doi:10.1175/1520-0493(2001)129<2270:APDDAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., M. M. French, J. C. Snyder, and J. B. Houser, 2016: Doppler radar observations of anticyclonic tornadoes in cyclonically rotating, right-moving supercells. Mon. Wea. Rev., 144, 15911616, doi:10.1175/MWR-D-15-0304.1.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106, 9951011, doi:10.1175/1520-0493(1978)106<0995:MEATSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., S. Erickson, and H. Brooks, 2011: A 5-yr climatology of tornado false alarms. Wea. Forecasting, 26, 534544, doi:10.1175/WAF-D-10-05004.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, doi:10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charba, J. P., and Y. Sasaki, 1968: Structure and movement of the severe thunderstorms of 3 April 1964 as revealed from radar and surface mesonetwork data analysis. U.S. Department of Commerce, Environmental Science Services Administration, Research Laboratories, National Severe Storms Laboratory, 47 pp.

  • Coffer, B. E., and M. D. Parker, 2015: Impacts of increasing low-level shear on supercells during the early evening transition. Mon. Wea. Rev., 143, 19451969, doi:10.1175/MWR-D-14-00328.1.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., H. E. Brooks, and J. A. Hart, 2004: Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig., 28, 1324.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M., 2015: Near-ground rotation in simulated supercells: On the robustness of the baroclinic mechanism. Mon. Wea. Rev., 143, 49294942, doi:10.1175/MWR-D-15-0115.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M., M. D. Parker, and L. J. Wicker, 2012: Uncertainties in trajectory calculations within near-surface mesocyclones of simulated supercells. Mon. Wea. Rev., 140, 29592966, doi:10.1175/MWR-D-12-00131.1.

    • Search Google Scholar
    • Export Citation
  • Dahl, J. M., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, doi:10.1175/JAS-D-13-0123.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1982: Observational and theoretical aspects of tornadogenesis. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer, 175–189.

  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, doi:10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2008: Can a descending rain curtain in a supercell instigate tornadogenesis barotropically? J. Atmos. Sci., 65, 24692497, doi:10.1175/2007JAS2516.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274291, doi:10.1016/j.atmosres.2014.04.007.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., and H. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, C. Church et al., Eds., Amer. Geophys. Union, 105–114.

  • Davies-Jones, R., R. J. Trapp, and H. B. Bluestein, 2001: Tornadoes and tornadic storms. Severe Convective Storms—An Overview, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221.

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, doi:10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 592 pp.

  • Esterheld, J. M., and D. J. Giuliano, 2008: Discriminating between tornadic and non-tornadic supercells: A new hodograph technique. Electron. J. Severe Storms Meteor., 3 (2). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/33.]

  • Frame, J., and P. M. Markowski, 2010: Numerical simulations of radiative cooling beneath the anvils of supercell thunderstorms. Mon. Wea. Rev., 138, 30243047, doi:10.1175/2010MWR3177.1.

    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, D. C. Dowell, L. J. Wicker, M. R. Kramar, and A. L. Pazmany, 2008: High-resolution, mobile Doppler radar observations of cyclic mesocyclogenesis in a supercell. Mon. Wea. Rev., 136, 49975016, doi:10.1175/2008MWR2407.1.

    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluth, 2013: Reexamining the vertical development of tornadic vortex signatures in supercells. Mon. Wea. Rev., 141, 45764601, doi:10.1175/MWR-D-12-00315.1.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., G. S. Forbes, and T. A. Umenhofer, 1976: Close-up view of 20 March 1976 tornadoes: Sinking cloud tops to suction vortices. Weatherwise, 29, 116145, doi:10.1080/00431672.1976.10544142.

    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from Project ANSWERS. Mon. Wea. Rev., 135, 240246, doi:10.1175/MWR3288.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, doi:10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Klees, A. M., Y. P. Richardson, P. M. Markowski, C. T. Weiss, J. M. Wurman, and K. Kosiba, 2016: Comparison of the tornadic and nontornadic supercells intercepted by VORTEX2 on 10 June 2010. Mon. Wea. Rev., 144, 32013231, doi:10.1175/MWR-D-15-0345.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377, doi:10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., D. W. Burgess, and R. A. Brown, 1978: Tornadic storm airflow and morphology derived from single-Doppler radar measurements. Mon. Wea. Rev., 106, 4861, doi:10.1175/1520-0493(1978)106<0048:TSAAMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D., W. Lewellen, and J. Xia, 2000: The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., 57, 527544, doi:10.1175/1520-0469(2000)057<0527:TIOALS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., 2010: On sedimentation and advection in multimoment bulk microphysics. J. Atmos. Sci., 67, 30843094, doi:10.1175/2010JAS3341.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, doi:10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852876, doi:10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2008: A comparison of the midlevel kinematic characteristics of a pair of supercell thunderstorms observed by airborne Doppler radar. Atmos. Res., 88, 314322, doi:10.1016/j.atmosres.2007.11.026.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2016: An idealized numerical simulation investigation of the effects of surface drag on the development of near-surface vorticity in supercell thunderstorms. J. Atmos. Sci., 73, 43494385, doi:10.1175/JAS-D-16-0150.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 372 pp.

  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, doi:10.1175/JAS-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and G. H. Bryan, 2016: LES of laminar flow in the PBL: A potential problem for convective storm simulations. Mon. Wea. Rev., 144, 18411850, doi:10.1175/MWR-D-15-0439.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, doi:10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., C. Hannon, J. Frame, E. Lancaster, A. Pietrycha, R. Edwards, and R. L. Thompson, 2003: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12621272, doi:10.1175/1520-0434(2003)018<1262:COVWPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. P. Richardson, E. Rasmussen, J. Straka, R. Davies-Jones, and R. J. Trapp, 2008: Vortex lines within low-level mesocyclones obtained from pseudo-dual-Doppler radar observations. Mon. Wea. Rev., 136, 35133535, doi:10.1175/2008MWR2315.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. P. Richardson, M. Majcen, J. Marquis, and J. Wurman, 2011: Characteristics of the wind field in three nontornadic low-level mesocyclones observed by the Doppler on Wheels radars. Electron. J. Severe Storms Meteor., 6 (3). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/75.]

  • Markowski, P. M., and Coauthors, 2012a: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part I: Evolution of kinematic and surface thermodynamic fields. Mon. Wea. Rev., 140, 28872915, doi:10.1175/MWR-D-11-00336.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012b: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 29162938, doi:10.1175/MWR-D-11-00337.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. Richardson, and G. Bryan, 2014: The origins of vortex sheets in a simulated supercell thunderstorm. Mon. Wea. Rev., 142, 39443954, doi:10.1175/MWR-D-14-00162.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327, doi:10.1175/MWR-D-11-00025.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, J. Wurman, K. Kosiba, P. Robinson, and G. Romine, 2014: An investigation of the Goshen County, Wyoming, tornadic supercell of 5 June 2009 using EnKF assimilation of mobile mesonet and radar observations collected during VORTEX2. Part I: Experiment design and verification of the EnKF analyses. Mon. Wea. Rev., 142, 530554, doi:10.1175/MWR-D-13-00007.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, J. Wurman, K. Kosiba, and P. Robinson, 2016: An investigation of the Goshen County, Wyoming, tornadic supercell of 5 June 2009 using EnKF assimilation of mobile mesonet and radar observations collected during VORTEX2. Part II: Mesocyclone-scale processes affecting tornado formation, maintenance, and decay. Mon. Wea. Rev., 144, 34413463, doi:10.1175/MWR-D-15-0411.1.

    • Search Google Scholar
    • Export Citation
  • Naylor, J., and M. S. Gilmore, 2012: Convective initiation in an idealized cloud model using an updraft nudging technique. Mon. Wea. Rev., 140, 36993705, doi:10.1175/MWR-D-12-00163.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2013: On the use of Doppler radar–derived wind fields to diagnose the secondary circulations of tornadoes. J. Atmos. Sci., 70, 11601171, doi:10.1175/JAS-D-12-0200.1.

    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., 2015: Low-level shear in the near-storm environment of simulated supercells and impacts of shear orientation on outflow characteristics. 16th Conf. on Mesoscale Processes, Boston, MA, Amer. Meteor. Soc., 3.1. [Available online at https://ams.confex.com/ams/16Meso/webprogram/Paper274760.html.]

  • Nowotarski, C. J., P. M. Markowski, Y. P. Richardson, and G. H. Bryan, 2015: Supercell low-level mesocyclones in simulations with a sheared convective boundary layer. Mon. Wea. Rev., 143, 272297, doi:10.1175/MWR-D-14-00151.1.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res., 17 (3), 445454.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2012: Impacts of lapse rates on low-level rotation in idealized storms. J. Atmos. Sci., 69, 538559, doi:10.1175/JAS-D-11-058.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, doi:10.1175/MWR-D-13-00167.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and J. M. Dahl, 2015: Production of near-surface vertical vorticity by idealized downdrafts. Mon. Wea. Rev., 143, 27952816, doi:10.1175/MWR-D-14-00310.1.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., K. L. Elmore, and S. J. Weiss, 2010: Assessing the impacts of proximity sounding criteria on the climatology of significant tornado environments. Wea. Forecasting, 25, 921930, doi:10.1175/2010WAF2222368.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530535, doi:10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and J. M. Straka, 2007: Evolution of low-level angular momentum in the 2 June 1995 Dimmitt, Texas, tornado cyclone. J. Atmos. Sci., 64, 13651378, doi:10.1175/JAS3829.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell III, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 9951006, doi:10.1175/1520-0477(1994)075<0995:VOTOOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, B., M. Xue, A. D. Schenkman, and D. T. Dawson, 2016: The role of surface drag in tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 73, 33713395, doi:10.1175/JAS-D-15-0332.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 2013: The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech., 45, 5984, doi:10.1146/annurev-fluid-011212-140639.

  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, doi:10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and M. Hu, 2014: Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma City supercell. J. Atmos. Sci., 71, 130154, doi:10.1175/JAS-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Shu, C.-W., 2003: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. Int. J. Comput. Fluid Dyn., 17, 107118, doi:10.1080/1061856031000104851.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, M. M. French, H. B. Bluestein, P. M. Markowski, and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rear-flank downdraft momentum surges in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 142, 29352960, doi:10.1175/MWR-D-13-00240.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, doi:10.1175//2555.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, R. P. Davies-Jones, and P. M. Markowski, 2007: An observational and idealized numerical examination of low-level counter-rotating vortices in the rear flank of supercells. Electron. J. Severe Storms Meteor., 2 (8). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/32.]

  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, doi:10.1175/WAF969.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, doi:10.1175/WAF-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 1999: Observations of nontornadic low-level mesocyclones and attendant tornadogenesis failure during VORTEX. Mon. Wea. Rev., 127, 16931705, doi:10.1175/1520-0493(1999)127<1693:OONLLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and R. Davies-Jones, 1997: Tornadogenesis with and without a dynamic pipe effect. J. Atmos. Sci., 54, 113133, doi:10.1175/1520-0469(1997)054<0113:TWAWAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., G. J. Stumpf, and K. L. Manross, 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680687, doi:10.1175/WAF864.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and H. Cai, 2000: Analysis of a nontornadic storm during VORTEX 95. Mon. Wea. Rev., 128, 565592, doi:10.1175/1520-0493(2000)128<0565:AOANSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. Cai, and H. V. Murphey, 2004: The Superior, Nebraska, supercell during BAMEX. Bull. Amer. Meteor. Soc., 85, 10951106, doi:10.1175/BAMS-85-8-1095.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294, doi:10.1016/0167-2789(91)90088-Q.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703, doi:10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, doi:10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and C.-S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 14661483, doi:10.1175/1520-0469(1982)039<1466:ASOTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, doi:10.1175/BAMS-D-11-00010.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509, doi:10.1175/1520-0469(1985)042<1487:ROTAMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 56
PDF Downloads 20 20 20

Simulated Supercells in Nontornadic and Tornadic VORTEX2 Environments

View More View Less
  • 1 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
Restricted access

Abstract

The composite near-storm environments of nontornadic and tornadic supercells sampled during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) both appear to be generally favorable for supercells and tornadoes. It has not been clear whether small differences between the two environments (e.g., more streamwise horizontal vorticity in the lowest few hundred meters above the ground in the tornadic composite) are actually determinative of storms’ tornadic potential. From the VORTEX2 composite environments, simulations of a nontornadic and a tornadic supercell are used to investigate storm-scale differences that ultimately favor tornadogenesis or tornadogenesis failure. Both environments produce strong supercells with robust midlevel mesocyclones and hook echoes, though the tornadic supercell has a more intense low-level updraft and develops a tornado-like vortex exceeding the EF3 wind speed threshold. In contrast, the nontornadic supercell only produces shallow vortices, which never reach the EF0 wind speed threshold. Even though the nontornadic supercell readily produces subtornadic surface vortices, these vortices fail to be stretched by the low-level updraft. This is due to a disorganized low-level mesocyclone caused by predominately crosswise vorticity in the lowest few hundred meters above ground level within the nontornadic environment. In contrast, the tornadic supercell ingests predominately streamwise horizontal vorticity, which promotes a strong low-level mesocyclone with enhanced dynamic lifting and stretching of surface vertical vorticity. These results support the idea that larger streamwise vorticity leads to a more intense low-level mesocyclone, whereas predominately crosswise vorticity yields a less favorable configuration of the low-level mesocyclone for tornadogenesis.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0226.s1.

Corresponding author address: Brice Coffer, North Carolina State University, Campus Box 8208, Raleigh, NC 27695-8208. E-mail: becoffer@ncsu.edu

Abstract

The composite near-storm environments of nontornadic and tornadic supercells sampled during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) both appear to be generally favorable for supercells and tornadoes. It has not been clear whether small differences between the two environments (e.g., more streamwise horizontal vorticity in the lowest few hundred meters above the ground in the tornadic composite) are actually determinative of storms’ tornadic potential. From the VORTEX2 composite environments, simulations of a nontornadic and a tornadic supercell are used to investigate storm-scale differences that ultimately favor tornadogenesis or tornadogenesis failure. Both environments produce strong supercells with robust midlevel mesocyclones and hook echoes, though the tornadic supercell has a more intense low-level updraft and develops a tornado-like vortex exceeding the EF3 wind speed threshold. In contrast, the nontornadic supercell only produces shallow vortices, which never reach the EF0 wind speed threshold. Even though the nontornadic supercell readily produces subtornadic surface vortices, these vortices fail to be stretched by the low-level updraft. This is due to a disorganized low-level mesocyclone caused by predominately crosswise vorticity in the lowest few hundred meters above ground level within the nontornadic environment. In contrast, the tornadic supercell ingests predominately streamwise horizontal vorticity, which promotes a strong low-level mesocyclone with enhanced dynamic lifting and stretching of surface vertical vorticity. These results support the idea that larger streamwise vorticity leads to a more intense low-level mesocyclone, whereas predominately crosswise vorticity yields a less favorable configuration of the low-level mesocyclone for tornadogenesis.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/MWR-D-16-0226.s1.

Corresponding author address: Brice Coffer, North Carolina State University, Campus Box 8208, Raleigh, NC 27695-8208. E-mail: becoffer@ncsu.edu

Supplementary Materials

    • Supplemental Materials (ZIP 137.82 MB)
Save