• Ambrizzi, T., and B. J. Hoskins, 1997: Stationary Rossby wave propagation in a baroclinic atmosphere. Quart. J. Roy. Meteor. Soc., 123, 919928, doi:10.1002/qj.49712354007.

    • Search Google Scholar
    • Export Citation
  • Ambrizzi, T., B. J. Hoskins, and H. H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52, 36613672, doi:10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40, 16891708, doi:10.1175/1520-0469(1983)040<1689:HEPIAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowen, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 39103293, doi:10.1175/2011JCLI4129.1.

    • Search Google Scholar
    • Export Citation
  • Clem, K. R., and R. L. Fogt, 2015: South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. J. Geophys. Res. Atmos., 120, 27732792, doi:10.1002/2014JD022940.

    • Search Google Scholar
    • Export Citation
  • Dickey, J. O., S. L. Marcus, and R. Hide, 1992: Global propagation of interannual fluctuations in atmospheric angular momentum. Nature, 357, 484488, doi:10.1038/357484a0.

    • Search Google Scholar
    • Export Citation
  • Dickey, J. O., S. L. Marcus, and T. M. Chin, 2007: Thermal wind forcing and atmospheric angular momentum: Origin of the Earth’s delayed response to ENSO. Geophys. Res. Lett., 34, L17803, doi:10.1029/2007GL030846.

  • Dima, I. M., and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60, 15221527, doi:10.1175/1520-0469(2003)060<1522:OTSOTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and E. J. Steig, 2013: Temperature change on the Antarctic Peninsula linked to the tropical Pacific. J. Climate, 26, 75707585, doi:10.1175/JCLI-D-12-00729.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and M. Kuttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, doi:10.1038/ngeo1129.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and J. M. Wallace, 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 63306348, doi:10.1175/JCLI-D-11-00523.1.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and A. A. Tsonis, 1996: Singular Spectrum Analysis: A New Tool in Time Series Analysis. Springer, 164 pp., doi:10.1007/978-1-4757-2514-8.

  • Franzke, C., 2009: Multi-scale analysis of teleconnection indices: Climate noise and nonlinear trend analysis. Nonlinear Processes Geophys., 16, 6576, doi:10.5194/npg-16-65-2009.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and C. S. Frederiksen, 1993: Southern Hemisphere storm tracks, blocking, and low-frequency anomalies in a primitive equation model. J. Atmos. Sci., 50, 31483163, doi:10.1175/1520-0469(1993)050<3148:SHSTBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and H. Lin, 2013: Tropical–extratropical interactions of intraseasonal oscillations. J. Atmos. Sci., 70, 31803197, doi:10.1175/JAS-D-12-0302.1.

    • Search Google Scholar
    • Export Citation
  • Freitas, A. C. V., and T. Ambrizzi, 2012: Changes in the austral winter Hadley circulation and the impact on stationary Rossby waves propagation. Adv. Meteor., 2012, 980816, doi:10.1155/2012/980816.

    • Search Google Scholar
    • Export Citation
  • Freitas, A. C. V., J. S. Frederiksen, T. J. O’Kane, and T. Ambrizzi, 2016: Simulated austral winter response of the Hadley circulation and stationary Rossby wave propagation to a warming climate. Climate Dyn., doi:10.1007/s00382-016-3356-4, in press.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and K. C. Mo, 1991: Intraseasonal oscillations in the global atmosphere. Part II: Southern Hemisphere and tropics. J. Atmos. Sci., 48, 780790, doi:10.1175/1520-0469(1991)048<0780:IOITGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, 1003, doi:10.1029/2000RG000092.

  • Golyandina, N., and A. Zhigljavsky, 2013: Singular Spectrum Analysis for Time Series. Springer, 120 pp.

  • Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, doi:10.1002/joc.1499.

    • Search Google Scholar
    • Export Citation
  • Hirata, A., and F. E. Grimm, 2016: The role of synoptic and intraseasonal anomalies in the life cycle of summer rainfall extremes over South America. Climate Dyn., 46, 30413055, doi:10.1007/s00382-015-2751-6.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear responses of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, T., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, doi:10.5194/acp-7-5229-2007.

    • Search Google Scholar
    • Export Citation
  • Irving, D., and I. Simmonds, 2016: A new method for identifying the Pacific–South American pattern and its influence on regional climate variability. J. Climate, 29, 61096125, doi:10.1175/JCLI-D-15-0843.1.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, doi:10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1983: Rossby wave propagation in a barotropic atmosphere. Dyn. Atmos. Oceans, 7, 111125, doi:10.1016/0377-0265(83)90013-1.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391251, doi:10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., P. J. Sheu, and I. S. Kang, 1994: Multiscale low-frequency circulation modes in the global atmosphere. J. Atmos. Sci., 51, 11691193, doi:10.1175/1520-0469(1994)051<1169:MLFCMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, X., E. P. Gerber, D. M. Holland, and C. Yoo, 2015: A Rossby wave bridge from the tropical Atlantic to West Antarctica. J. Climate, 28, 22562273, doi:10.1175/JCLI-D-14-00450.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Tech. Rep. 1, Statistical Forecasting Project, Dept. of Meteorology, MIT, 49 pp.

  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, doi:10.1175/2008JCLI2200.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., C. Deser, and T. Reichler, 2009: Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett., 36, L03803, doi:10.1029/2008GL036076.

  • Matear, R., T. J. O’Kane, J. S. Risbey, and M. Chamberlain, 2015: Sources of heterogeneous variability and trends in Antarctic sea-ice. Nat. Commun., 6, 8656, doi:10.1038/ncomms9656.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610, doi:10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596, doi:10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. N. Paegle, 2001: The Pacific South–American modes and their downstream effects. Int. J. Climatol., 21, 12111229, doi:10.1002/joc.685.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J. O. Dickey, and S. L. Marcus, 1997: Interannual fluctuations in atmospheric angular momentum simulated by the National Centers for Environmental Prediction medium range forecast. J. Geophys. Res., 102, 67036713, doi:10.1029/96JD02609.

    • Search Google Scholar
    • Export Citation
  • Monselesan, D. P., T. J. O’Kane, J. S. Risbey, and J. Church, 2015: Internal climate memory in observations and models. Geophys. Res. Lett., 42, 12321242, doi:10.1002/2014GL062765.

    • Search Google Scholar
    • Export Citation
  • Nguyen, H., A. Evens, C. Lucas, I. Smith, and B. Timbal, 2013: The Hadley circulation in reanalysis: Climatology, variability and change. J. Climate, 26, 33573376, doi:10.1175/JCLI-D-12-00224.1.

    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., J. S. Risbey, C. L. E. Franzke, I. Horenko, and D. P. Monselesan, 2013: Changes in the metastability of the midlatitude Southern Hemisphere circulation and the utility of nonstationary cluster analysis and split-flow blocking indices as diagnostic tools. J. Atmos. Sci., 70, 824842, doi:10.1175/JAS-D-12-028.1.

    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., J. S. Risbey, D. P. Monselesan, I. Horenko, and C. L. E. Franzke, 2016b: On the dynamics of persistent states and their secular trends in the waveguides of the southern hemisphere troposphere. Climate Dyn., 46, 35673597, doi:10.1007/s00382-015-2786-8.

    • Search Google Scholar
    • Export Citation
  • Oliveira, F. N. M., L. M. V. Carvalhoc, and T. Ambrizzi, 2014: A new climatology for southern hemisphere blockings in the winter and the combined effect of ENSO and SAM phases. Int. J. Climatol., 34, 16761692, doi:10.1002/joc.3795.

    • Search Google Scholar
    • Export Citation
  • Oort, H. A., and J. J. Yienger, 1996: Observed interannual variability in the Hadley Circulation and its connection to ENSO. J. Climate, 56, 250269.

    • Search Google Scholar
    • Export Citation
  • Reid, G. C., and K. S. Gage, 1984: A relationship between the height of the tropical tropopause and the global angular momentum of the atmosphere. Geophys. Res. Lett., 11, 840842, doi:10.1029/GL011i009p00840.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 2005: Persistent positive anomalies in the Southern Hemisphere circulation. Mon. Wea. Rev., 133, 977988, doi:10.1175/MWR2900.1.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., and M. J. Revell, 1999: Blocking over the South Pacific and Rossby wave propagation. Mon. Wea. Rev., 127, 22332247, doi:10.1175/1520-0493(1999)127<2233:BOTSPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., and H. van Loon, 1982: Spatial variability of sea level pressure and 500-mb height anomalies over the Southern Hemisphere. Mon. Wea. Rev., 110, 13751392, doi:10.1175/1520-0493(1982)110<1375:SVOSLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., C. Deser, and Y. Okumura, 2012: An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dyn., 38, 323347, doi:10.1007/s00382-010-0985-x.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., Q. Ding, D. S. Battisti, and A. Jenkins, 2012: Tropical forcing of circumpolar deep water inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Ann. Glaciol., 53, 1928, doi:10.3189/2012AoG60A110.

    • Search Google Scholar
    • Export Citation
  • Szeredi, I., and D. J. Karoly, 1987: Horizontal structure of monthly fluctuations of the Southern Hemisphere troposphere from station data. Aust. Meteor. Mag., 35, 119129.

    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., E. P. Gerber, A. H. Sobel, and L. M. Polvani, 2013: Understanding Hadley cell expansion versus contraction: Insights from simplified models and implications for recent observations. J. Climate, 26, 43044321, doi:10.1175/JCLI-D-12-00598.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. Timlin, 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 1074–1087, doi:10.1002/joc.2336.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 5 5 5

A Multiscale Reexamination of the Pacific–South American Pattern

View More View Less
  • 1 CSIRO Oceans and Atmosphere, Hobart, Australia
Restricted access

Abstract

The authors undertake a multiscale spectral reexamination of the variability of the Pacific–South American (PSA) pattern and the mechanisms by which this variability occurs. Time scales from synoptic to interannual are investigated, focusing on the means by which tropical variability is communicated to the midlatitudes and on in situ forcing within the midlatitude waveguides. Particular interest is paid to what fraction of the total variability associated with the PSA, occurring on interannual time scales, is attributable to tropical forcing relative to that occurring on synoptic and intraseasonal time scales via internal waveguide dynamics. In general, it is found that the eastward-propagating wave train pattern typically associated with the PSA manifests across time scales from synoptic to interannual, with the majority of the variability occurring on synoptic-to-intraseasonal time scales largely independent of tropical convection. It is found that the small fraction of the total variance with a tropical signal occurs via the zonal component of the thermal wind modulating both the subtropical and polar jets. The respective roles of the Hadley circulation and stationary Rossby wave sources are also examined. Further, a PSA-like mode is identified in terms of the slow components of higher-order modes of tropospheric geopotential height. This study reestablishes the multiscale nonlinear nature of the PSA modes arising largely as a manifestation of internal midlatitude waveguide dynamics and local disturbances.

Corresponding author e-mail: Terence J. O’Kane, terence.okane@csiro.au

Abstract

The authors undertake a multiscale spectral reexamination of the variability of the Pacific–South American (PSA) pattern and the mechanisms by which this variability occurs. Time scales from synoptic to interannual are investigated, focusing on the means by which tropical variability is communicated to the midlatitudes and on in situ forcing within the midlatitude waveguides. Particular interest is paid to what fraction of the total variability associated with the PSA, occurring on interannual time scales, is attributable to tropical forcing relative to that occurring on synoptic and intraseasonal time scales via internal waveguide dynamics. In general, it is found that the eastward-propagating wave train pattern typically associated with the PSA manifests across time scales from synoptic to interannual, with the majority of the variability occurring on synoptic-to-intraseasonal time scales largely independent of tropical convection. It is found that the small fraction of the total variance with a tropical signal occurs via the zonal component of the thermal wind modulating both the subtropical and polar jets. The respective roles of the Hadley circulation and stationary Rossby wave sources are also examined. Further, a PSA-like mode is identified in terms of the slow components of higher-order modes of tropospheric geopotential height. This study reestablishes the multiscale nonlinear nature of the PSA modes arising largely as a manifestation of internal midlatitude waveguide dynamics and local disturbances.

Corresponding author e-mail: Terence J. O’Kane, terence.okane@csiro.au
Save