Sensitivities of Summertime Mesoscale Circulations in the Coastal Carolinas to Modifications of the Kain–Fritsch Cumulus Parameterization

Aaron P. Sims State Climate Office of North Carolina, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Aaron P. Sims in
Current site
Google Scholar
PubMed
Close
,
Kiran Alapaty Systems Exposure Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

Search for other papers by Kiran Alapaty in
Current site
Google Scholar
PubMed
Close
, and
Sethu Raman Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Sethu Raman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two mesoscale circulations, the Sandhills circulation and the sea breeze, influence the initiation of deep convection over the Sandhills and the coast in the Carolinas during the summer months. The interaction of these two circulations causes additional convection in this coastal region. Accurate representation of mesoscale convection is difficult as numerical models have problems with the prediction of the timing, amount, and location of precipitation. To address this issue, the authors have incorporated modifications to the Kain–Fritsch (KF) convective parameterization scheme and evaluated these mesoscale interactions using a high-resolution numerical model. The modifications include changes to the subgrid-scale cloud formulation, the convective turnover time scale, and the formulation of the updraft entrainment rates. The use of a grid-scaling adjustment parameter modulates the impact of the KF scheme as a function of the horizontal grid spacing used in a simulation. Results indicate that the impact of this modified cumulus parameterization scheme is more effective on domains with coarser grid sizes. Other results include a decrease in surface and near-surface temperatures in areas of deep convection (due to the inclusion of the effects of subgrid-scale clouds on the radiation), improvement in the timing of convection, and an increase in the strength of deep convection.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aaron Sims, apsims@ncsu.edu

Abstract

Two mesoscale circulations, the Sandhills circulation and the sea breeze, influence the initiation of deep convection over the Sandhills and the coast in the Carolinas during the summer months. The interaction of these two circulations causes additional convection in this coastal region. Accurate representation of mesoscale convection is difficult as numerical models have problems with the prediction of the timing, amount, and location of precipitation. To address this issue, the authors have incorporated modifications to the Kain–Fritsch (KF) convective parameterization scheme and evaluated these mesoscale interactions using a high-resolution numerical model. The modifications include changes to the subgrid-scale cloud formulation, the convective turnover time scale, and the formulation of the updraft entrainment rates. The use of a grid-scaling adjustment parameter modulates the impact of the KF scheme as a function of the horizontal grid spacing used in a simulation. Results indicate that the impact of this modified cumulus parameterization scheme is more effective on domains with coarser grid sizes. Other results include a decrease in surface and near-surface temperatures in areas of deep convection (due to the inclusion of the effects of subgrid-scale clouds on the radiation), improvement in the timing of convection, and an increase in the strength of deep convection.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aaron Sims, apsims@ncsu.edu
Save
  • Alapaty, K., J. A. Herwehe, T. L. Otte, C. G. Nolte, O. R. Bullock, M. S. Mallard, J. S. Kain, and J. Dudhia, 2012: Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys. Res. Lett., 39, L24809, doi:10.1029/2012GL054031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alapaty, K., J. S. Kain, J. A. Herwehe, O. R. Bullock Jr., M. S. Mallard, T. L. Spero, and C. G. Nolte, 2014a: Multiscale Kain-Fritsch Scheme: Formulations and tests. Annual CMAS Conf., Chapel Hill, NC, https://www.cmascenter.org/conference/2014/slides/ kiran_alapaty_multiscale_kain-fritsch_2014.pptx.

  • Alapaty, K., J. S. Kain, J. A. Herwehe, O. R. Bullock Jr., Y. Zheng, M. S. Mallard, and A. P. Sims, 2014b: Achieving scale-independent convection representation with the Kain-Fritsch scheme. 15th Annual WRF Users’ Workshop, Boulder, CO, UCAR, P10, http://www2.mmm.ucar.edu/wrf/users/workshops/WS2014/posters/p10.pdf.

  • Arakawa, A., and C.-M. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 19771992, doi:10.1175/JAS-D-12-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arya, S. P., 2001: Introduction to Micrometeorology. Academic Press, 307 pp.

  • Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, doi:10.1002/qj.289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., C. S. Bretherton, J. Cetrone, and M. Kharoutdinov, 2007: Cloud-resolving model simulations of KWAJEX: Model sensitivities and comparisons with satellite and radar observations. J. Atmos. Sci., 64, 14881508, doi:10.1175/JAS3982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bullock, R., K. Alapaty, J. A. Herwehe, and J. S. Kain, 2015: A dynamically computed convective time scale for the Kain–Fritsch convective parameterization scheme. Mon. Wea. Rev., 143, 21052120, doi:10.1175/MWR-D-14-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Z., and D.-L. Zhang, 2016: Analysis of missed summer severe rainfall forecasts. Wea. Forecasting, 31, 433450, doi:10.1175/WAF-D-15-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, I.-J., E. K. Jin, J.-Y. Han, S.-Y. Kim, and Y. Kwon, 2015: Sensitivity of diurnal variation in simulated precipitation during East Asian summer monsoon to cumulus parameterization schemes. J. Geophys. Res. Atmos., 120, 11 97111 987, doi:10.1002/2015JD023810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cintineo, R., J. A. Otkin, M. Xue, and F. Kong, 2014: Evaluating the performance of planetary boundary layer and cloud microphysical parameterization schemes in convection permitting ensemble forecasts using synthetic GOES-13 satellite observations. Mon. Wea. Rev., 142, 163182, doi:10.1175/MWR-D-13-00143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, and T. C. Chen, 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135, 34563473, doi:10.1175/MWR3467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Y. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, doi:10.1175/2009WAF2222222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 27222738, doi:10.1175/2009JCLI3340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, doi:10.1256/qj.03.130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 17221733, doi:10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955965, doi:10.1175/BAMS-85-7-955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., C. F. Chappell, and L. R. Hoxit, 1976: The use of large-scale budgets for convective parameterization. Mon. Wea. Rev., 104, 14081418, doi:10.1175/1520-0493(1976)104<1408:TUOLSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430, doi:10.1175/2009WAF2222269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and A. P. Lock, 2004: The turbulent kinetic energy budget for shallow cumulus convection. Quart. J. Roy. Meteor. Soc., 130, 401422, doi:10.1256/qj.03.50.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., B. F. Larson, and J. Graschel, 2009: Validation of NEXRAD multisensory precipitation estimates using an experimental dense rain gauge network in south Louisiana. J. Hydrol., 373, 463478, doi:10.1016/j.jhydrol.2009.05.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herwehe, J. A., K. Alapaty, T. L. Spero, and C. G. Nolte, 2014a: Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud-radiation interactions. J. Geophys. Res. Atmos., 119, 53175330, doi:10.1002/2014JD021504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herwehe, J. A., K. Alapaty, J. S. Kain, and R. Bullock Jr., 2014b: Summer season evaluation of a new multiscale Kain-Fritsch convective parameterization. 15th Annual WRF Users’ Workshop, Boulder, CO, UCAR, P11, http://www2.mmm.ucar.edu/wrf/users/workshops/WS2014/posters/p11.pdf.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., V. J. Dagostaro, V. E. Kousky, and R. J. Joyce, 2007: An examination of precipitation in observations and model forecasts during NAME with emphasis on the diurnal cycle. J. Climate, 20, 16801692, doi:10.1175/JCLI4084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Crossref
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436, doi:10.1175/2009JCLI3063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., and Coauthors, 2007: An analysis of the warm-season diurnal cycle over the continental United States and northern Mexico in general circulation models. J. Hydrometeor., 8, 344366, doi:10.1175/JHM581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., L. Li, A. Dai, and K. E. Kunkel, 2004: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208, doi:10.1029/2004GL021054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

  • Lin, Y., M. Zhao, Y. Ming, J.-C. Golaz, L. J. Donner, S. A. Klein, V. Ramaswamy, and S. Xie, 2013: Precipitation partitioning, tropical clouds, and intraseasonal variability in GFDL AM2. J. Climate, 26, 54535466, doi:10.1175/JCLI-D-12-00442.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C.-H., M. W. Moncrieff, J. D. Tuttle, and R. E. Carbone, 2006: Explicit and parameterized episodes of warm-season precipitation over the continental United States. Adv. Atmos. Sci., 23, 91105, doi:10.1007/s00376-006-0010-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raman, S., A. Sims, R. Ellis, and R. Boyles, 2005: Numerical simulation of mesoscale circulations in a region of contrasting soil types. Pure Appl. Geophys., 162, 16891714, doi:10.1007/s00024-005-2689-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and X. Zeng, 2000: Instability and large-scale circulations in a two-column model of the tropical troposphere. Quart. J. Roy. Meteor. Soc., 126, 31173135, doi:10.1002/qj.49712657007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robe, F. R., and K. A. Emanuel, 1996: Moist convective scaling: Some inferences from three-dimensional cloud ensemble simulations. J. Atmos. Sci., 53, 32653275, doi:10.1175/1520-0469(1996)053<3265:MCSSIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Nature versus nurture in shallow convection. J. Atmos. Sci., 67, 16551666, doi:10.1175/2009JAS3307.1.

  • Sims, A. P., and S. Raman, 2016: Interaction between two distinct mesoscale circulations during summer in the coastal region of eastern USA. Bound.-Layer Meteor., 160, 113132, doi:10.1007/s10546-015-0125-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., and C. S. Bretherton, 1999: Effects of resolution on the simulation of stratocumulus entrainment. Quart. J. Roy. Meteor. Soc., 125, 425439, doi:10.1002/qj.49712555403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30-60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901, doi:10.2151/jmsj1965.66.6_883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. H. Sobel, 2011: Response of convection to relative sea surface temperature: Cloud-resolving simulations in two and three dimensions. J. Geophys. Res., 116, D11119, doi:10.1029/2010JD015347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and N. L. Seaman, 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125, 252278, doi:10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, doi:10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wootten, A., and R. P. Boyles, 2014: Comparison of NCEP multisensor precipitation estimates with independent gauge data over the eastern United States. J. Appl. Meteor. Climatol., 53, 28482862, doi:10.1175/JAMC-D-14-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and S. K. Krueger, 1991: Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon. Wea. Rev., 119, 342367, doi:10.1175/1520-0493(1991)119<0342:EOCPUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, X., and T.-Y. Lee, 2010: Role of convective parameterization in simulations of a convection band at grey-zone resolutions. Tellus, 62A, 617632, doi:10.1111/j.1600-0870.2010.00470.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., K. Alapaty, J. Herwehe, A. Del Genio, and D. Niyogi, 2016: improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain–Fritsch scheme. Mon. Wea. Rev., 144, 833860, doi:10.1175/MWR-D-15-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 326 135 7
PDF Downloads 175 36 0