Lightning over Three Large Tropical Lakes and the Strait of Malacca: Exploratory Analyses

Ronald L. Holle Vaisala, Inc., Tucson, Arizona

Search for other papers by Ronald L. Holle in
Current site
Google Scholar
PubMed
Close
and
Martin J. Murphy Vaisala, Inc., Louisville, Colorado

Search for other papers by Martin J. Murphy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lightning stroke density measured by the Global Lightning Dataset (GLD360) has shown several strong maxima around the globe. Several of these extremes are located over large tropical water bodies surrounded by terrain features. Four prominent maxima are examined and compared in this study: Lake Maracaibo in South America, the Strait of Malacca in equatorial Asia, Lake Victoria in East Africa, and Lake Titicaca in South America. Specifically, the authors observe that all four water bodies exhibit sustained maxima in lightning occurrence all night, the peak lightning frequency occurs very late at night or the following morning at three of the four sites, and the nocturnal maxima are out of phase at the four locations even though the afternoon maxima over the surrounding terrain all occur between 1500 and 1700 local solar time. The meteorological factors affecting the diurnal cycle of lightning occurrence over these four water bodies, which are all adjacent to mountains, are explored in this study.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: ron.holle@vaisala.com

Abstract

Lightning stroke density measured by the Global Lightning Dataset (GLD360) has shown several strong maxima around the globe. Several of these extremes are located over large tropical water bodies surrounded by terrain features. Four prominent maxima are examined and compared in this study: Lake Maracaibo in South America, the Strait of Malacca in equatorial Asia, Lake Victoria in East Africa, and Lake Titicaca in South America. Specifically, the authors observe that all four water bodies exhibit sustained maxima in lightning occurrence all night, the peak lightning frequency occurs very late at night or the following morning at three of the four sites, and the nocturnal maxima are out of phase at the four locations even though the afternoon maxima over the surrounding terrain all occur between 1500 and 1700 local solar time. The meteorological factors affecting the diurnal cycle of lightning occurrence over these four water bodies, which are all adjacent to mountains, are explored in this study.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: ron.holle@vaisala.com
Save
  • Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau Jr., 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, D18206, doi:10.1029/2009JD013411.

    • Search Google Scholar
    • Export Citation
  • Albrecht, R. I., S. J. Goodman, D. E. Buechler, R. J. Blakeslee, and H. J. Christian, 2016: Where are the lightning hotspots on Earth? Bull. Amer. Meteor. Soc., 97, 20512068, doi:10.1175/BAMS-D-14-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anyah, R. O., 2005: Modeling the variability of the climate system over Lake Victoria basin. Ph.D. thesis, Dept. of Marine, Earth and Atmospheric Sciences, North Carolina State University, 307 pp., https://repository.lib.ncsu.edu/handle/1840.16/3820.

  • Anyah, R. O., F. H. M. Semazzi, and L. Xie, 2006: Simulated physical mechanisms associated with climate variability over Lake Victoria basin in East Africa. Mon. Wea. Rev., 134, 35883609, doi:10.1175/MWR3266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., G. Kim, E. Williams, and S. W. Nesbitt, 2004: Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat. Hazards Earth Syst. Sci., 4, 2951, doi:10.5194/nhess-4-29-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berghuis, E. P. D., 1995: Salinity in Lake Maracaibo. M.S. thesis, Faculty of Civil Engineering Hydraulic and Geotechnical Engineering Division, and Delft Hydraulics Estuaries and Seas Division, Delft University of Technology, Delft, Netherlands, 74 pp., https://repository.tudelft.nl/islandora/object/uuid:69df939d-2d36-494b-90b9-e51a1f0bee1c.

  • Boccippio, D. J., W. J. Koshak, and R. J. Blakeslee, 2002: Performance assessment of the optical transient detector and lightning imaging sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332, doi:10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bürgesser, R. E., M. G. Nicora, and E. E. Avila, 2012: Characterization of the lightning activity of “Relampago del Catatumbo.” J. Atmos. Sol.-Terr. Phys., 77, 241247, doi:10.1016/j.jastp.2012.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bürgesser, R. E., M. G. Nicora, and E. E. Avila, 2013: Spatial and time distribution of the flash rate over tropical Africa. J. Atmos. Sol.-Terr. Phys., 94, 4148, doi:10.1016/j.jastp.2012.12.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamberlain, J. M., C. L. Bain, D. F. A. Boyd, K. McCourt, T. Butcher, and S. Palmer, 2014: Forecasting storms over Lake Victoria using a high resolution model. Meteor. Appl., 21, 419430, doi:10.1002/met.1403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delclaux, F., A. Coudrain, and T. Condom, 2007: Evaporation estimation of Lake Titicaca: A synthesis review and modeling. Hydrol. Processes, 21, 16641677, doi:10.1002/hyp.6360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900, doi:10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, M., F. Kimura, and M. Yoshizaki, 2010: Morning precipitation peak over the Strait of Malacca under a calm condition. Mon. Wea. Rev., 138, 14741486, doi:10.1175/2009MWR3068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 1999: Multiscale analysis of the summertime precipitation over the central Andes. Mon. Wea. Rev., 127, 901921, doi:10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giovannettone, J. P., and A. P. Barros, 2009: Probing regional orographic controls of precipitation and cloudiness in the central Andes using satellite data. J. Hydrometeor., 10, 167182, doi:10.1175/2008JHM973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holle, R. L., 2014: Diurnal variations of NLDN-reported cloud-to-ground lightning in the United States. Mon. Wea. Rev., 142, 10371052, doi:10.1175/MWR-D-13-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Jones, C., and L. M. V. Carvalho, 2002: Active and break phases in the South American monsoon system. J. Climate, 15, 905914, doi:10.1175/1520-0442(2002)015<0905:AABPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, doi:10.1175/2007JCLI2051.1.

  • Laing, A. G., R. E. Carbone, and V. Levizzani, 2011: Cycles and propagation of deep convection over equatorial Africa. Mon. Wea. Rev., 139, 28322853, doi:10.1175/2011MWR3500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López, R. E., and R. L. Holle, 1986: Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer. Mon. Wea. Rev., 114, 12881312, doi:10.1175/1520-0493(1986)114<1288:DASVOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., T. Filiaggi, R. L. Holle, and R. A. Brown, 2007: Cloud-to-ground lightning flash rates relative to VIL, maximum reflectivity, cell height, and cell isolation. J. Lightning Res., 1, 132147.

    • Search Google Scholar
    • Export Citation
  • Mach, D. M., H. J. Christian, R. J. Blakeslee, D. J. Boccippio, S. J. Goodman, and W. L. Boeck, 2007: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res., 112, D09210, doi:10.1029/2006JD007787.

    • Search Google Scholar
    • Export Citation
  • Mallick, S., and Coauthors, 2014a: Evaluation of the GLD360 performance characteristics using rocket-and-wire triggered lightning data. Geophys. Res. Lett., 41, 36363642, doi:10.1002/2014GL059920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallick, S., and Coauthors, 2014b: Performance characteristics of the NLDN for return strokes and pulses superimposed on steady currents, based on rocket-triggered lightning data acquired in Florida in 2004–2012. J. Geophys. Res. Atmos., 119, 38253856, doi:10.1002/2013JD021401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003a: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844, doi:10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, M. Xu, and A. J. Negri, 2003b: Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Mon. Wea. Rev., 131, 799812, doi:10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muñoz, A. G., J. Díaz Lobatón, X. Chourio, and M. J. Stock, 2016: Seasonal prediction of lightning activity in north-western Venezuela: Large-scale versus local drivers. Atmos. Res., 172–173, 147162, doi:10.1016/j.atmosres.2015.12.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Geospatial-Intelligence Agency, 1988: Lago de Maracaibo. Chart 24481, Defense Mapping Agency, http://www.costadevenezuela.org/cartas/lagomg.pdf.

  • NOAA/OAR/ESRL PSD, 2017: Weekly SST totals for the past 52 weeks. NOAA/OAR/ESRL Physical Sciences Division, Boulder, CO, accessed 8 April 2017, https://www.esrl.noaa.gov/psd/map/clim/sst.anim.year.html.

  • Poelman, D. R., W. Schulz, and C. Vergeiner, 2013: Performance characteristics of distinct lightning detection networks covering Belgium. J. Atmos. Oceanic Technol., 30, 942951, doi:10.1175/JTECH-D-12-00162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohjola, H., and A. Mäkelä, 2013: The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmos. Res., 123, 117128, doi:10.1016/j.atmosres.2012.10.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and D. T. Shea, 2013: Evaluating WWLLN performance relative to TRMM/LIS. Geophys. Res. Lett., 40, 23442348, doi:10.1002/grl.50428.

  • Said, R., and M. J. Murphy, 2016: GLD360 upgrade: Performance analysis and applications. 24th Int. Lightning Detection Conf. & Sixth Int. Lightning Meteorology Conf., San Diego, CA, Vaisala, 8 pp., https://my.vaisala.net/en/events/ildcilmc/archive/Pages/ILDCILMC-2016-Archive.aspx.

  • Said, R., M. B. Cohen, and U. S. Inan, 2013: Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations. J. Geophys. Res. Atmos., 118, 69056915, doi:10.1002/jgrd.50508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y., F. H. M. Semazzi, L. Xie, and L. J. Ogallo, 2004: A coupled regional climate model for the Lake Victoria basin of East Africa. Int. J. Climatol., 24, 5775, doi:10.1002/joc.983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolz, D. C., S. A. Rutledge, and J. R. Pierce, 2015: Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. J. Geophys. Res. Atmos., 120, 62076231, doi:10.1002/2014JD023033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., L. Xie, F. Semazzi, and B. Liu, 2015: Effect of lake surface temperature on the spatial distribution and intensity of the precipitation over the Lake Victoria Basin. Mon. Wea. Rev., 143, 11791192, doi:10.1175/MWR-D-14-00049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venugopal, V., K. Virts, J. Sukhatme, J. M. Wallace, and B. Chattopadhyay, 2016: A comparison of the fine-scale structure of the diurnal cycle of tropical rain and lightning. Atmos. Res., 169, 515522, doi:10.1016/j.atmosres.2015.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013a: Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 13811391, doi:10.1175/BAMS-D-12-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013b: Diurnal lightning variability over the Maritime Continent: Impact of low-level winds, cloudiness, and the MJO. J. Atmos. Sci., 70, 31283146, doi:10.1175/JAS-D-13-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 444 129 22
PDF Downloads 319 87 11