A Combined Approach to Improving the Regional Model Forecasts for the Rainy Season in China

Yanfeng Zhao State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China

Search for other papers by Yanfeng Zhao in
Current site
Google Scholar
PubMed
Close
,
Donghai Wang Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, and State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Donghai Wang in
Current site
Google Scholar
PubMed
Close
, and
Jianjun Xu College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China

Search for other papers by Jianjun Xu in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A combined forecasting methodology, into which the spectral nudging, lateral boundary filtering, and update initial conditions methods are incorporated, was employed in the regional Weather Research and Forecasting (WRF) Model. The intent was to investigate the potential for improving the prediction capability for the rainy season in China via using as many merits of the global model having better predictability as it does for the large-scale circulation and of the regional model as it does for the small-scale features. The combined methodology was found to be successful in improving the prediction of the regional atmospheric circulation and precipitation. It performed best for the larger magnitude precipitation, the relative humidity above 800 hPa, and wind fields below 300 hPa. Furthermore, the larger the magnitude and the longer the lead time, the more obvious is the improvement in terms of the accumulated rainfall of persistent severe rainfall events.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Donghai Wang, wangdh7@mail.sysu.edu.cn

Abstract

A combined forecasting methodology, into which the spectral nudging, lateral boundary filtering, and update initial conditions methods are incorporated, was employed in the regional Weather Research and Forecasting (WRF) Model. The intent was to investigate the potential for improving the prediction capability for the rainy season in China via using as many merits of the global model having better predictability as it does for the large-scale circulation and of the regional model as it does for the small-scale features. The combined methodology was found to be successful in improving the prediction of the regional atmospheric circulation and precipitation. It performed best for the larger magnitude precipitation, the relative humidity above 800 hPa, and wind fields below 300 hPa. Furthermore, the larger the magnitude and the longer the lead time, the more obvious is the improvement in terms of the accumulated rainfall of persistent severe rainfall events.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Donghai Wang, wangdh7@mail.sysu.edu.cn
Save
  • Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, doi:10.1002/qj.49712152203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Y. C., and T. Zhang, 2016: Analysis of the June 2016 atmospheric circulation and weather (in Chinese). Meteor. Mon., 42 (9), 11541160.

    • Search Google Scholar
    • Export Citation
  • Cha, D. H., and D. K. Lee, 2009: Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique. J. Geophys. Res., 114, D14108, doi:10.1029/2008JD011176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. J., F. Y. Wei, and Y. F. Gong, 2010: Assessing the extended range forecast error of NCEP/CFS in the summer of East Asia. J. Appl. Meteor. Sci., 21, 659670.

    • Search Google Scholar
    • Export Citation
  • Denis, B., J. Cote, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using discrete cosine transform (DCT). Mon. Wea. Rev., 130, 18121829, doi:10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. C. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, Y., S. D. Liu, D. H. Wang, and Y. F. Zhao, 2015: Assessment on forecasting skills of GFS model for two persistent rainfalls over southern China (in Chinese). Meteor. Mon., 41, 4551.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feser, F., 2006: Enhanced detectability of added value in limited-area model results separated into different spatial scales. Mon. Wea. Rev., 134, 21802190, doi:10.1175/MWR3183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glisan, J. M., W. J. Gutowski, J. J. Cassano, and M. E. Higgins, 2013: Effects of spectral nudging in WRF on Arctic temperature and precipitation simulations. J. Climate, 26, 39853999, doi:10.1175/JCLI-D-12-00318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grazzini, F., and F. Vitart, 2015: Atmospheric predictability and Rossby wave packets. Quart. J. Roy. Meteor. Soc., 141, 27932802, doi:10.1002/qj.2564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, doi:10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiao, L. F., and Coauthors, 2015: Blending of global and regional analyses with a spatial filter: Application to typhoon prediction over the western North Pacific Ocean. Wea. Forecasting, 30, 754770, doi:10.1175/WAF-D-14-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamaru, H., and M. Kanamitsu, 2007: Scale-selective bias correction in a downscaling of global analysis using a regional model. Mon. Wea. Rev., 135, 334350, doi:10.1175/MWR3294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W. J., Z. H. Zheng, and C. H. Sun, 2013: Improvements to dynamical analogue climate prediction method in China (in Chinese). Chin. J. Atmos. Sci., 37, 341350, doi:10.3878/j.issn.1006-9895.2012.12311.

    • Search Google Scholar
    • Export Citation
  • Lim, K. S. S., and S. Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, doi:10.1175/2009MWR2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P., A. P. Tsimpidi, Y. Hu, B. Stone, A. G. Russell, and A. Nenes, 2012: Differences between downscaling with spectral and grid nudging using WRF. Atmos. Chem. Phys., 12, 36013610, doi:10.5194/acp-12-3601-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659, doi:10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321333, doi:10.3402/tellusa.v17i3.9076.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21A, 289307.

  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, doi:10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2005: Regional climate simulations over North America: Interaction of local processes with improved large-scale flow. J. Climate, 18, 12271246, doi:10.1175/JCLI3369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, M., W. S. Duan, H. Xu, and B. Wang, 2006: Applications of conditional nonlinear optimal perturbation in predictability study and sensitivity analysis of weather and climate. Adv. Atmos. Sci., 23, 9921002, doi:10.1007/s00376-006-0992-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, W. Q., and L. F. He, 2016: Analysis of the July 2016 atmospheric circulation and weather (in Chinese). Meteor. Mon., 42 (10), 12831288.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Z. Liu, 2014: Convection-permitting forecasts initialized with continuously cycling limited-area 3DVAR, ensemble Kalman filter, and “hybrid” variational–ensemble data assimilation systems. Mon. Wea. Rev., 142, 716738, doi:10.1175/MWR-D-13-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., 2011: From observations to service delivery: Challenges and opportunities. WMO Bull., 60 (2), 96107.

  • Spero, T. L., M. J. Otte, J. H. Bowden, and C. G. Nolte, 2014: Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting Model. J. Geophys. Res. Atmos., 119, 11 68211 694, doi:10.1002/2014JD022173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 36643673, doi:10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., and R. M. Errico, 1990: The influence of artificial and physical factors upon predictability estimates using a complex limited-area model. Mon. Wea. Rev., 118, 14601482, doi:10.1175/1520-0493(1990)118<1460:TIOAAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H. L., X. Y. Huang, D. Xu, and J. Liu, 2014a: A scale-dependent blending scheme for WRFDA: Impact on regional weather forecasting. Geosci. Model Dev., 7, 18191828, doi:10.5194/gmd-7-1819-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., M. Bellus, J. F. Geleyn, X. Ma, W. Tian, and F. Weidle, 2014b: A new method for generating initial condition perturbations in a regional ensemble prediction system: Blending. Mon. Wea. Rev., 142, 20432059, doi:10.1175/MWR-D-12-00354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., and R. H. Zhang, 2011: Interannual variability of the East Asian summer monsoon and its association with the anomalous atmospheric circulation over the mid–high latitudes and external forcing. Acta Meteor. Sin., 69, 219233.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., and Z. L. Yang, 2015: A new dynamical downscaling approach with GCM bias corrections and spectral nudging. J. Geophys. Res. Atmos., 120, 30633084, doi:10.1002/2014JD022958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., 2005: Analysis blending using a spatial filter in grid-point model coupling. HIRLAM Newsletter, No. 48, Article 10, HIRLAM Programme, de Bilt, Netherlands, 49–55, http://www.hirlam.org/index.php/hirlam-documentation/doc_view/517-hirlam-newsletter-no-48-article10-yang.

  • Zhai, P. M., Y. Q. Ni, and Y. Chen, 2013: Mechanism and forecasting method of persistent extreme weather events: Review and prospect. Adv. Earth Sci., 28, 11771188.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., J. Chen, X. Zhi, Y. Wang, and Y. Wang, 2015: Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system. Adv. Atmos. Sci., 32, 11431155, doi:10.1007/s00376-015-4232-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y. F., D. H. Wang, Z. M. Liang, and J. J. Xu, 2016: Improving numerical experiments of the persistent severe rainfall events in Southern China using the spectral nudging and filtering schemes. Quart. J. Roy. Meteor. Soc., 142, 31153127, doi:10.1002/qj.2892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y. F., D. H. Wang, and J. J. Xu, 2017a: Improving the regional model forecasting of persistent severe rainfall over the Yangtze River Valley using the spectral nudging and update cycle methods: A case study. Atmos. Sci. Lett., 18, 96102, doi:10.1002/asl.731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y. F., D. H. Wang, and J. J. Xu, 2017b: An attempt to improve the forecasting of persistent severe rainfall using the spectral nudging and update cycle methods. Wea. Forecasting, 32, 713723, doi:10.1175/WAF-D-16-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y. F., D. H. Wang, Z. M. Liang, and J. J. Xu, 2017c: On the dynamics of the large-scale circulation during the persistent severe rainfall events in southern China. J. Meteor. Soc. Japan, 95, 111125, doi:10.2151/jmsj.2017-006.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 577 274 53
PDF Downloads 183 32 1