Evaluation of Cloud Microphysical Schemes for a Warm Frontal Snowband during the GPM Cold Season Precipitation Experiment (GCPEx)

Aaron R. Naeger Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Aaron R. Naeger in
Current site
Google Scholar
PubMed
Close
,
Brian A. Colle School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

Search for other papers by Brian A. Colle in
Current site
Google Scholar
PubMed
Close
, and
Andrew Molthan Earth Science Office, NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Andrew Molthan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Detailed observations from the Global Precipitation Measurement (GPM) mission Cold Season Precipitation Experiment (GCPEx) of an intense warm frontal band on 18 February 2012 were used to evaluate several bulk microphysical parameterizations within the NASA-Unified Weather Research and Forecasting (NU-WRF) Model. These included the Predicted Particle Properties (P3), Morrison (MORR), Stony Brook University (SBU), and Goddard four-class ice (4ICE) microphysics schemes. All schemes were able to predict the snowband, but the simulated intensities varied because of various assumptions in these schemes. The saturation adjustment scheme within MORR promoted excessive amounts of cloud water evaporational cooling in the warm sector, which contributed to a decrease in midlevel instability approaching the frontal band and thus a weaker band. In contrast, the explicit calculation of cloud water condensation/evaporation in the P3 scheme produced limited amounts of evaporational cooling, which allowed for greater midlevel instability to support band development. The P3 and SBU schemes produced moderate rime/graupel mass within the band that was confirmed by observations, while the MORR and 4ICE schemes drastically underpredicted the graupel mass. The high-density, fast-falling rimed particles in P3 underwent weak sublimation and melting, which helped promote a stronger horizontal temperature gradient and greater low-level instability along the frontal band compared to the other schemes. Overall, the schemes that use specified thresholds for converting between the predefined ice-phase categories of cloud ice, snow, and graupel had the most unrepresentative hydrometeor types. These results highlight the advantage of predicting ice particle properties and explicitly calculating cloud water condensation/evaporation in the P3 scheme.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Aaron R. Naeger, aaron.naeger@nasa.gov

Abstract

Detailed observations from the Global Precipitation Measurement (GPM) mission Cold Season Precipitation Experiment (GCPEx) of an intense warm frontal band on 18 February 2012 were used to evaluate several bulk microphysical parameterizations within the NASA-Unified Weather Research and Forecasting (NU-WRF) Model. These included the Predicted Particle Properties (P3), Morrison (MORR), Stony Brook University (SBU), and Goddard four-class ice (4ICE) microphysics schemes. All schemes were able to predict the snowband, but the simulated intensities varied because of various assumptions in these schemes. The saturation adjustment scheme within MORR promoted excessive amounts of cloud water evaporational cooling in the warm sector, which contributed to a decrease in midlevel instability approaching the frontal band and thus a weaker band. In contrast, the explicit calculation of cloud water condensation/evaporation in the P3 scheme produced limited amounts of evaporational cooling, which allowed for greater midlevel instability to support band development. The P3 and SBU schemes produced moderate rime/graupel mass within the band that was confirmed by observations, while the MORR and 4ICE schemes drastically underpredicted the graupel mass. The high-density, fast-falling rimed particles in P3 underwent weak sublimation and melting, which helped promote a stronger horizontal temperature gradient and greater low-level instability along the frontal band compared to the other schemes. Overall, the schemes that use specified thresholds for converting between the predefined ice-phase categories of cloud ice, snow, and graupel had the most unrepresentative hydrometeor types. These results highlight the advantage of predicting ice particle properties and explicitly calculating cloud water condensation/evaporation in the P3 scheme.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Aaron R. Naeger, aaron.naeger@nasa.gov
Save
  • Aydin, K., and T. A. Seliga, 1984: Radar polarimetric backscattering properties of conical graupel. J. Atmos. Sci., 41, 18871892, doi:10.1175/1520-0469(1984)041<1887:RPBPOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blivens, F., 2014: GPM ground validation Precipitation Video Imager (PVI) GCPEX. NASA Global Hydrology Center DAAC, Huntsville, AL, accessed 1 August 2015, https://dx.doi.org/10.5067/GPMGV/GCPEX/PVI/DATA301.

    • Crossref
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., M. Garvert, J. B. Wolfe, C. F. Mass, and C. P. Woods, 2005: The 13–14 December 2001 IMPROVE-2 event. Part III: Simulated microphysical budgets and sensitivity studies. J. Atmos. Sci., 62, 35353558, doi:10.1175/JAS3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., A. Naeger, and A. Molthan, 2017: Structure and evolution of a warm frontal precipitation band during the GPM Cold Season Precipitation Experiment (GCPEx). Mon. Wea. Rev., 145, 473493, https://doi.org/10.1175/MWR-D-16-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delene, D., and M. R. Poellot, 2016: GPM ground validation UND Citation cloud microphysics GCPEX V2. NASA Global Hydrology Center DAAC, Huntsville, AL, accessed 1 August 2015, https://dx.doi.org/10.5067/GPMGV/GCPEX/MULTIPLE/DATA203.

    • Crossref
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2008: Toward the mitigation of spurious cloud-edge supersaturation in cloud models. Mon. Wea. Rev., 136, 12241234, doi:10.1175/2007MWR2283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and S. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 52335250, doi:10.5194/acp-14-5233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140, doi:10.1029/RS019i001p00132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Smith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, doi:10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, and M. R. Poellot, 2014: GPM ground validation NCAR cloud microphysics particle probes GCPEX. NASA Global Hydrology Center DAAC, Huntsville, AL, accessed 5 January 2016, https://dx.doi.org/10.5067/GPMGV/GCPEX/MULTIPLE/DATA201.

    • Crossref
    • Export Citation
  • Hong, S.-Y., K.-S. S. Lim, Y.-H. Lee, J.-C. Ha, H.-W. Kim, S.-J. Ham, and J. Dudhia, 2010: Evaluation of the WRF double-moment six-class microphysics scheme for precipitating convection. Adv. Meteor., 2010, 707253, https://dx.doi.org/10.1155/2010/707253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36, 156162, doi:10.1175/1520-0469(1979)036<0156:SDOPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudak, D., 2013: GPM ground validation dual polarized C-band Doppler radar King City GCPEX. NASA Global Hydrology Center DAAC, Huntsville, AL, accessed 1 August 2015, https://dx.doi.org/10.5067/GPMGV/GCPEX/CBAND/DATA101.

    • Crossref
    • Export Citation
  • Igel, A. L., M. R. Igel, and S. C. van den Heever, 2015: Make it a double? Sobering results from simulations using single-moment microphysics schemes. J. Atmos. Sci., 72, 910925, doi:10.1175/JAS-D-14-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, R. Cifelli, W. Olson, J. Halverson, S. Rutledge, and J. Simpson, 2007: Improving simulations of convective system from TRMM LBA: Easterly and westerly regimes. J. Atmos. Sci., 64, 11411164, doi:10.1175/JAS3879.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S., W.-K. Tao, X. Zeng, and Y. Li, 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. J. Atmos. Sci., 68, 23062320, doi:10.1175/JAS-D-10-05000.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, S., W. Tao, J. Chern, D. Wu, and X. Li, 2014: Benefits of a fourth ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme. J. Atmos. Sci., 71, 35833612, doi:10.1175/JAS-D-13-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and B. A. Colle, 2009: The 4–5 December 2001 IMPROVE-2 event: Observed microphysics and comparisons with the Weather Research and Forecasting Model. Mon. Wea. Rev., 137, 13721392, doi:10.1175/2008MWR2653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 10131035, doi:10.1175/2010MWR3293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., L. J. Donner, and B. A. Colle, 2011: Parameterization of riming intensity and its impact on ice fall speed using ARM data. Mon. Wea. Rev., 139, 10361047, https://doi.org/10.1175/2010MWR3299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maahn, M., and P. Kollias, 2012: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech., 5, 26612673, doi:10.5194/amt-5-2661-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and H. Morrison, 2013: Predicting graupel density in a bulk microphysics scheme. J. Atmos. Sci., 70, 410429, doi:10.1175/JAS-D-12-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., M. K. Yau, J. Mailhot, S. Bélair, and R. McTaggart-Cowan, 2010: Simulation of an orographic precipitation event during IMPROVE-2. Part II: Sensitivity to the number of moments in the bulk microphysics scheme. Mon. Wea. Rev., 138, 625642, doi:10.1175/2009MWR3121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and A. J. Heymsfield, 2005: The treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 16371644, doi:10.1175/JAS3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., and B. A. Colle, 2012: Comparisons of single- and double-moment microphysics schemes in the simulation of a synoptic-scale snowfall event. Mon. Wea. Rev., 140, 29823002, doi:10.1175/MWR-D-11-00292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., W. A. Petersen, S. W. Nesbitt, and D. Hudak, 2010: Evaluating the snow crystal size distribution and density assumptions within a single-moment microphysics scheme. Mon. Wea. Rev., 138, 42544267, doi:10.1175/2010MWR3485.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: Modeling supersaturation and subgrid-scale mixing in a large-eddy model with two-moment bulk warm microphysics. J. Atmos. Sci., 65, 792812, doi:10.1175/2007JAS2374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 11031130, doi:10.1175/2010MWR3433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, doi:10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., A. Tokay, and P. N. Gatlin, 2013: GPM ground validation Pluvio precipitation gauge GCPEX. NASA Global Hydrology Center DAAC, Huntsville, AL, accessed 1 August 2015, https://dx.doi.org/10.5067/GPMGV/GCPEX/PLUVIO/DATA301.

    • Crossref
    • Export Citation
  • Petersen, W. A., C. Pettersen, M. Kulie, P. N. Gatlin, and M. T. Wingo, 2015: GPM ground validation NASA Micro Rain Radar (MRR) GCPEX V2. NASA Global Hydrology Center DAAC, Huntsville, AL, https://dx.doi.org/10.5067/GPMGV/GCPEX/MRR/DATA204.

    • Crossref
    • Export Citation
  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49, 22462266, doi:10.1175/2010JAMC2282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skofronick-Jackson, G., and Coauthors, 2015: Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For measurement’s sake, let it snow. Bull. Amer. Meteor. Soc., 96, 17191741, doi:10.1175/BAMS-D-13-00262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., F. Albers, A. Reuter, A. V. Korolev, U. Maixner, E. Rashke, and Z. Vukovic, 2001: Laboratory measurements of the response of a PMS OAP-2DC. J. Atmos. Oceanic Technol., 18, 11501170, doi:10.1175/1520-0426(2001)018<1150:LMOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 500 101 14
PDF Downloads 248 53 1