A Comparison of the Downstream Predictability Associated with ET and Baroclinic Cyclones

Ryan D. Torn Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Ryan D. Torn in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of the extratropical transition (ET) of tropical cyclones and baroclinic cyclogenesis in the western North Pacific (WNP), Atlantic, and southern Indian Ocean (SIO) basins on the predictability of the downstream midlatitude flow is assessed using 30 years of cases from the Global Ensemble Forecast System (GEFS) Reforecast, version 2. In all three basins, ET is associated with statistically larger 500-hPa geopotential height forecast standard deviation (SD) compared to the forecast climatology. The higher SD values originate from where the TC enters the midlatitudes and spread downstream at the group velocity of the associated wave packet. Of the three basins, WNP ET is associated with the largest amplitude and longest-lasting SD anomalies. Forecasts initialized 2–4 days prior to the onset of ET have larger SD anomalies compared to forecasts initialized during or after the onset of ET. By contrast, the region of positive SD anomaly associated with winter baroclinic cyclones is confined to the upstream trough, with fall cyclones exhibiting some downstream propagation characteristics similar to ET. The ET cases with the larger downstream SD anomaly are characterized by a more amplified ridge downstream of the TC as it enters the midlatitudes. By contrast, ET cases with an upstream trough, large TC position variability at the onset of ET, latent heat release, or upper-tropospheric PV advection by the irrotational wind are not characterized by significantly larger downstream SD compared to cases without an upstream trough or smaller values of these quantities.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan Torn, rtorn@albany.edu

Abstract

The impact of the extratropical transition (ET) of tropical cyclones and baroclinic cyclogenesis in the western North Pacific (WNP), Atlantic, and southern Indian Ocean (SIO) basins on the predictability of the downstream midlatitude flow is assessed using 30 years of cases from the Global Ensemble Forecast System (GEFS) Reforecast, version 2. In all three basins, ET is associated with statistically larger 500-hPa geopotential height forecast standard deviation (SD) compared to the forecast climatology. The higher SD values originate from where the TC enters the midlatitudes and spread downstream at the group velocity of the associated wave packet. Of the three basins, WNP ET is associated with the largest amplitude and longest-lasting SD anomalies. Forecasts initialized 2–4 days prior to the onset of ET have larger SD anomalies compared to forecasts initialized during or after the onset of ET. By contrast, the region of positive SD anomaly associated with winter baroclinic cyclones is confined to the upstream trough, with fall cyclones exhibiting some downstream propagation characteristics similar to ET. The ET cases with the larger downstream SD anomaly are characterized by a more amplified ridge downstream of the TC as it enters the midlatitudes. By contrast, ET cases with an upstream trough, large TC position variability at the onset of ET, latent heat release, or upper-tropospheric PV advection by the irrotational wind are not characterized by significantly larger downstream SD compared to cases without an upstream trough or smaller values of these quantities.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryan Torn, rtorn@albany.edu
Save
  • Agusti-Panareda, A., C. D. Thorncroft, G. C. Craig, and S. L. Gray, 2004: The extratropical transition of Hurricane Irene (1999): A potential-vorticity perspective. Quart. J. Roy. Meteor. Soc., 130, 10471074, doi:10.1256/qj.02.140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiyyer, A., 2015: Recurving western North Pacific tropical cyclones and midlatitude predictability. Geophys. Res. Lett., 42, 77997807, doi:10.1002/2015GL065082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anwender, D., P. A. Harr, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies. Mon. Wea. Rev., 136, 32263247, doi:10.1175/2008MWR2249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anwender, D., M. Leutbecher, S. C. Jones, and P. A. Harr, 2010: Sensitivity experiments for ensemble forecasts of the extratropical transition of Typhoon Tokage (2004). Quart. J. Roy. Meteor. Soc., 136, 183200, doi:10.1002/qj.527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., D. Keyser, L. F. Bosart, and J. M. Cordeira, 2013: A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346, doi:10.1175/MWR-D-12-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Archambault, H. M., D. Keyser, L. F. Bosart, C. A. Davis, and J. M. Cordeira, 2015: A composite perspective of the extratropical flow response to recurving Western North Pacific tropical cyclones. Mon. Wea. Rev., 143, 11221141, doi:10.1175/MWR-D-14-00270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and D. B. Dean, 1991: The Agnes rainstorm of June 1972: Surface feature evolution culminating in inland storm redevelopment. Wea. Forecasting, 6, 515537, doi:10.1175/1520-0434(1991)006<0515:TAROJS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and G. M. Lackmann, 1995: Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case-study of Hurricane David (September 1979). Mon. Wea. Rev., 123, 32683291, doi:10.1175/1520-0493(1995)123<3268:PTCRIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., S. L. Gray, and J. Methven, 2013: Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Quart. J. Roy. Meteor. Soc., 139, 12701282, doi:10.1002/qj.2037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 20382053, doi:10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1999: Characteristics of wave packets in the upper troposphere. Part II: Seasonal and hemispheric variations. J. Atmos. Sci., 56, 17291747, doi:10.1175/1520-0469(1999)056<1729:COWPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 9991015, doi:10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., M. Zheng, and K. Raeder, 2013: Medium range ensemble sensitivity analysis of two extreme Pacific extratropical cyclones. Mon. Wea. Rev., 141, 211231, doi:10.1175/MWR-D-11-00304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, H. C., and M. Didone, 2013: Diagnosis and dynamics of forecast error growth. Mon. Wea. Rev., 141, 24832501, doi:10.1175/MWR-D-12-00242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, M. J., L. F. Bosart, W. E. Bracken, G. J. Hakim, D. M. S. Chultz, M. A. Bedrick, and K. R. Tyle, 1997: The March 1993 Superstorm cyclogenesis: Incipient phase synoptic- and convective-scale flow interaction and model performance. Mon. Wea. Rev., 125, 30413072, doi:10.1175/1520-0493(1997)125<3041:TMSCIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirren, S., M. Didone, and H. C. Davis, 2003: Diagnosis of “forecast-analysis” differences of a weather prediction system. Geophys. Res. Lett., 30, 2060, doi:10.1029/2003GL017986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 38473869, doi:10.1175/MWR-D-15-0419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., S. C. Jones, C. A. Davis, P. A. Harr, and M. Weissmann, 2013a: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part I: Upper-level ridgebuilding and modification of the jet. Quart. J. Roy. Meteor. Soc., 139, 21482164, doi: 10.1002/qj.2091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., S. C. Jones, and C. A. Davis, 2013b: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part II: Downstream evolution. Quart. J. Roy. Meteor. Soc., 139, 21652180, doi:10.1002/qj.2119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., S. T. K. Lang, and J. H. Keller, 2015: A quantitative assessment of the sensitivity of the downstream midlatitude flow response to extratropical transition of tropical cyclones. Geophys. Res. Lett., 42, 95219529, doi:10.1002/2015GL065764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grazzini, F., and F. Vitart, 2015: Atmospheric predictability and Rossby wave packets. Quart. J. Roy. Meteor. Soc., 141, 27932802, doi:10.1002/qj.2564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2003: Developing wave packets in the North Pacific storm track. Mon. Wea. Rev., 131, 28242837, doi:10.1175/1520-0493(2003)131<2824:DWPITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2005: Vertical structure of midlatitude analysis and forecast errors. Mon. Wea. Rev., 133, 567578, doi:10.1175/MWR-2882.1.

  • Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Y. Zhu, and W. Lapenta, 2013: NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc., 94, 15531565, doi:10.1175/BAMS-D-12-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and J. M. Dea, 2009: Downstream development associated with the extratropical transition of tropical cyclones over the Western North Pacific. Mon. Wea. Rev., 137, 12951319, doi:10.1175/2008MWR2558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev., 128, 26132633, doi:10.1175/1520-0493(2000)128<2613:ETOTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harr, P. A., D. Anwender, and S. C. Jones, 2008: Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 32053225, doi:10.1175/2008MWR2248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, doi:10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodyss, D., and E. Hendricks, 2010: The resonant excitation of baroclinic waves by the divergent circulation of recurving tropical cyclones. J. Atmos. Sci., 67, 36003616, doi:10.1175/2010JAS3459.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J. Roy. Meteor. Soc., 138, 407418, doi:10.1002/qj.934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. H., S. J. Jones, and P. A. Harr, 2014: An eddy kinetic energy view of physical and dynamical processes in distinct forecast scenarios for the extratropical transition of two tropical cyclones. Mon. Wea. Rev., 142, 27512771, doi:10.1175/MWR-D-13-00219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, J. H., S. J. Jones, and P. A. Harr, 2017: Amplification of the downstream wave train during extratropical transition: Sensitivity studies. Mon. Wea. Rev., 145, 15291548, doi:10.1175/MWR-D-16-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., P. A. Harr, and R. L. Elsberry, 2002: Extratropical transition of western North Pacific tropical cyclones: Midlatitude and tropical cyclone contributions to reintensification. Mon. Wea. Rev., 130, 22402259, doi:10.1175/1520-0493(2002)130<2240:ETOWNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamberson, W. L., R. D. Torn, L. F. Bosart, and L. Magnusson, 2016: Diagnosis of the source and evolution of medium-range forecast errors for Extratropical Cyclone Joachim. Wea. Forecasting, 31, 11971214, doi:10.1175/WAF-D-16-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., M. A. Shapiro, and R. Gelaro, 2002: Initial condition sensitivity and error growth in forecasts of the 25 January 2000 East Coast snowstorm. Mon. Wea. Rev., 130, 957974, doi:10.1175/1520-0493(2002)130<0957:ICSAEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., K. J. Sellwood, D. Hodyss, Z. Toth, and Y. Song, 2010: Characteristics of target areas selected by the ensemble transform Kalman filter for medium-range forecasts of high-impact winter weather. Mon. Wea. Rev., 138, 28032824, doi:10.1175/2010MWR3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez-Alvarado, O., H. Joos, J. Chagnon, M. Boettcher, S. L. Gray, R. S. Plant, J. Methven, and H. Wernli, 2014: The dichotomous structure of the warm conveyor belt. Quart. J. Roy. Meteor. Soc., 140, 18091824, doi:10.1002/qj.2276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez-Alvarado, O., E. Madonna, S. L. Gray, and H. Joos, 2016: A route to systematic error in forecasts of Rossby waves. Quart. J. Roy. Meteor. Soc., 142, 196210, doi:10.1002/qj.2645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., E. Zenklusen, C. Schwierz, and H. C. Davies, 2006: Episodes of Alpine heavy precipitation with an overlying elongated stratospheric intrusion: A climatology. Int. J. Climatol., 26, 11491164, doi:10.1002/joc.1295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 19721998, doi:10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pantillon, F., J.-P. Chaboureau, C. Lac, and P. Mascart, 2013: On the role of a Rossby wave train during the extratropical transition of Hurricane Helene (2006). Quart. J. Roy. Meteor. Soc., 139, 370386, doi:10.1002/qj.1974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinting, J. F., and S. C. Jones, 2016: On the impact of tropical cyclones on Rossby wave packets: A climatological perspective. Mon. Wea. Rev., 144, 20212048, doi:10.1175/MWR-D-14-00298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., M. S. Peng, and J.-H. Chen, 2009: Recurving tropical cyclones: Singular vector sensitivity and downstream impacts. Mon. Wea. Rev., 137, 13201337, doi:10.1175/2008MWR2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., and S. C. Jones, 2010: The downstream impact of tropical cyclones on a developing baroclinic wave in idealized scenarios of extratropical transition. Quart. J. Roy. Meteor. Soc., 136, 617637, doi:10.1002/qj.605.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., and S. C. Jones, 2014: Interaction of a tropical cyclone with a high-amplitude, midlatitude wave pattern: Waviness analysis, trough deformation and track bifurcation. Quart. J. Roy. Meteor. Soc., 140, 13621376, doi:10.1002/qj.2221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., S. C. Jones, and C. A. Davis, 2008: The impact of extratropical transition on the downstream flow: An idealized modelling study with a straight jet. Quart. J. Roy. Meteor. Soc., 134, 6991, doi:10.1002/qj.189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and Coauthors, 2013: Characteristics of occasional poor medium-range weather forecasts for Europe. Bull. Amer. Meteor. Soc., 94, 13931405, doi:10.1175/BAMS-D-12-00099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1981: Dynamical predictability of monthly means. J. Atmos. Sci., 38, 25472572, doi:10.1175/1520-0469(1981)038<2547:DPOMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1979: Downstream and upstream development of unstable baroclinic waves. J. Atmos. Sci., 36, 12391254, doi:10.1175/1520-0469(1979)036<1239:TDAUDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souders, M. B., B. A. Colle, and E. K. M. Chang, 2014: The climatology and characteristics of Rossby wave packets using a feature-based tracking technique. Mon. Wea. Rev., 142, 35283548, doi:10.1175/MWR-D-13-00371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., Z. Toth, R. E. Morss, S. J. Majumdar, B. J. Etherton, and C. H. Bishop, 2000: The effect of targeted dropsonde observations during the 1999 winter storm reconnaissance program. Mon. Wea. Rev., 128, 35203537, doi:10.1175/1520-0493(2000)128<3520:TEOTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teubler, F., and M. Riemer, 2016: Dynamics of Rossby wave packets in a quantitative potential vorticity-potential temperature framework. J. Atmos. Sci., 73, 10631081, doi:10.1175/JAS-D-15-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Diagnosing the factors that influence downstream ridging during extratropical transition. J. Atmos. Sci., 67, 817833, doi:10.1175/2009JAS3093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2009: Initial condition sensitivity of western Pacific extratropical transitions determined using ensemble-based sensitivity analysis. Mon. Wea. Rev., 137, 33883406, doi:10.1175/2009MWR2879.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and G. J. Hakim, 2015: Comparison of wave packets associated with extratropical transition and winter cyclones. Mon. Wea. Rev., 143, 17821803, doi:10.1175/MWR-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case study. Quart. J. Roy. Meteor. Soc., 123, 16771706, doi:10.1002/qj.49712354211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 15691586, doi:10.1175/JAS3912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185, doi:10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, M., E. K. M. Chang, and B. A. Colle, 2013: Ensemble sensitivity tools for assessing extratropical cyclone intensity and track predictability. Wea. Forecasting, 28, 11331156, doi:10.1175/WAF-D-12-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 443 121 16
PDF Downloads 235 57 2